
LNSLNS
®

PProgrammerrogrammer ’s Guide’s Guide

b
y

TM

L
N

S
 P

ro
g

ra
m

m
e

r
’s

 G
u

id
e

078-0177-01F

Echelon, LON, LONWORKS, NodeBuilder,
LonTalk, Neuron, LONMARK, LNS, LonBuilder,
LonUsers, BeAtHome, LonManager, 3120,
3150, LonPoint, Digital Home, LONWORLD,
ShortStack, i.LON, the Echelon logo, and the
LONMARK logo are registered trademarks of
Echelon Corporation. LNS Powered by
Echelon, LonMaker, LonLink, LonResponse,
OpenLDV, LONews, Open Systems Alliance,
Panoramix, Panoramix Powered by Echelon,
LONMARK Powered by Echelon, Powered by
Echelon, and LonSupport are trademarks of
Echelon Corporation.

Other brand and product names are trademarks or
registered trademarks of their respective holders.

Neuron Chips and other OEM Products were not
designed for use in equipment or systems which
involve danger to human health or safety or a risk of
property damage and Echelon assumes no
responsibility or liability for use of the Neuron Chips
in such applications.

Parts manufactured by vendors other than Echelon
and referenced in this document have been
described for illustrative purposes only, and may not
have been tested by Echelon. It is the responsibility
of the customer to determine the suitability of these
parts for each application.

ECHELON MAKES AND YOU RECEIVE NO
WARRANTIES OR CONDITIONS, EXPRESS, IMPLIED,
STATUTORY OR IN ANY COMMUNICATION WITH YOU,
AND ECHELON SPECIFICALLY DISCLAIMS ANY
IMPLIED WARRANTY OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the
prior written permission of Echelon Corporation.

Printed in the United States of America.
Copyright ©2000-2004 by Echelon Corporation.

Echelon Corporation
www.echelon.com

LNS Programmer's Guide i

Preface

The LNS® network operating system provides a
comprehensive set of software tools that allows multiple
network applications to perform a broad range of services
over LONWORKS

® and IP networks. These services include
network management (network installation, configuration,
maintenance, and repair) and system-wide monitoring and
control. This guide describes how to use the LNS Object
Server ActiveX Control to write LNS applications on a
Microsoft Windows® Server 2003, Windows XP, or Windows
2000 host PC.

 LNS Programmer's Guide ii

Purpose
This guide describes how to use the LNS Object Server ActiveX Control to develop an
LNS application on a Microsoft Windows Server 2003, Windows XP, or Windows 2000
host PC.

Audience
This guide is intended for software developers creating LNS applications. LNS
applications may be written in any language that supports COM Components or ActiveX
controls, including Microsoft® Visual C++ (versions 6.0-7.1) and Microsoft Visual Basic
6.0. Readers of this guide should have programming experience in such a language, and
familiarity with LONWORKS® technology and COM/ActiveX control concepts. An
introduction to LONWORKS technology can be found in the Introduction to the LONWORKS
System document available at www.echelon.com.

Examples
Throughout this guide, Visual Basic code examples are used to illustrate concepts. To
make the examples more easily understood, they have been simplified. Error checking
has been removed, and in some cases, the examples are only fragments that will not
compile.

For complete examples, see the example applications provided with the LNS Application
Developer’s Kit. This includes example network management, monitor and control, plug-
in and director, and xDriver applications. Appendix C of this document describes the
example applications in more detail.

Technical Support
If you have technical questions that are not answered within this document or the online
help files provided with the LNS Application Developer’s Kit, you can contact Echelon for
technical support. Your LNS Application Developer’s Kit distributor may also provide
technical support. In addition, you can enroll in training classes at Echelon to learn more
about LNS.

You can find out more about Echelon’s technical support and training services on the
Echelon Support home page at http://www.echelon.com/support.

System Requirements
System requirements and recommendations for the PC on which the LNS Application
Developer’s Kit and LNS Redistribution Kit, as well as the LNS Server or LNS Remote
Client redistributions, will run are listed below.

http://www.echelon.com/
http://www.echelon.com/support

LNS Programmer's Guide iii

Development System
The following requirements are for the PC on which the LNS Application Developer’s Kit
or LNS Redistribution Kit will be run:

• Windows Server 2003, Windows XP, or Windows 2000

• Pentium III 600 MHz or faster

• 256 MB RAM (512 MB RAM recommended)

• 50 MB or more of free disk space. For highest performance during
development, Echelon recommends using a high-performance hard disk.

• Any Windows application development tool that supports the use of COM
components or ActiveX controls. Echelon has tested and offers technical
assistance on the following development environments only:

• Microsoft Visual Basic 6.0, Service Pack 6 or higher

• Microsoft Visual Studio .NET 2003 (C++, used with ATL or MFC)

• CD-ROM drive

• Mouse or compatible pointing device

• LNS Network Interface card. Chapter 11 of this document lists and
describes the compatible LNS Network Interface cards. Note that an
Ethernet card can function as an LNS Network Interface if you are using
Echelon's i.LON 1000 Internet Server or the i.LON 600 LONWORKS/IP
Server, and can also be used to access network interfaces such as the
i.LON 100 Internet Server or the i.LON 10 Ethernet Adapter.

• The minimum screen size required to use all LNS utilities is SVGA
800x600.

LNS Server PC for a Smaller Network
The following requirements are for a PC on which an LNS Server for a smaller network
will be run.

• Windows Server 2003, Windows XP, or Windows 2000

• Pentium 100MHz or faster

• 50 MB or more of free disk space, not taking into account the size of the
LNS application and LNS network databases

• 256 MB RAM or more, depending upon the requirements of the LNS
applications that will be running in addition to the LNS Server

• LNS Network Interface card. Chapter 11 of this document lists and
describes the compatible LNS Network Interface cards. Note that an
Ethernet card can function as an LNS Network Interface if you are using
Echelon's i.LON 1000 Internet Server or the i.LON 600 LONWORKS/IP
Server, and can also be used to access network interfaces such as the
i.LON 100 Internet Server or the i.LON 10 Ethernet Adapter.

• The minimum screen size required to use all LNS utilities is SVGA
800x600.

 LNS Programmer's Guide iv

LNS Server PC for a Larger, Busier Network
These requirements and recommendations are also valid for a PC on which a large
network database is engineered before the LNS Server for that network becomes
operational.

• Windows Server 2003, Windows XP, or Windows 2000

• Pentium 4 1GHz or faster

• 50 MB or more of free disk space, not taking into account the size of the
LNS application and LNS network databases. For highest performance
during development, Echelon recommends using a high-performance
hard disk.

• 512 GB RAM or more, depending upon the requirements of the LNS
applications that will be running in addition to the LNS Server. Echelon
recommends that you have between 500 MB and 1 GB available.

• LNS Network Interface card. Chapter 11 of this document lists and
describes the compatible LNS Network Interface cards. Note that an
Ethernet card can function as an LNS Network Interface if you are using
Echelon's i.LON 1000 Internet Server or the i.LON 600 LONWORKS/IP
Server, and can be used to access network interfaces such as the i.LON
100 Internet Server or the i.LON 10 Ethernet Adapter.

• The minimum screen size required to use all LNS utilities is SVGA
800x600.

LNS Remote Client PC
The following requirements are for a PC on which the LNS Remote Client redistribution
will be run.

• Windows Server 2003, Windows XP, or Windows 2000

• Pentium 100MHz or faster

• 50 MB or more of free disk space, not taking into account the size of the
LNS application and LNS network databases

• 128 MB RAM or more, depending upon the requirements of the LNS
applications that will be running in addition to the LNS Server

• LNS Network Interface card. Chapter 11 of this document lists and
describes the compatible LNS Network Interface cards. Note that an
Ethernet card can function as an LNS Network Interface if you are using
Echelon's i.LON 1000 Internet Server or the i.LON 600 LONWORKS/IP
Server, and can also be used to access network interfaces such as the
i.LON 100 Internet Server or the i.LON 10 Ethernet Adapter.

• The minimum screen size required to use all LNS utilities is SVGA
800x600.

LNS Programmer's Guide v

Table of Contents
Preface ... i

Purpose..ii
Audience..ii
Examples...ii
Technical Support...ii
System Requirements ..ii

Development System ...iii
LNS Server PC for a Smaller Network...iii
LNS Server PC for a Larger, Busier Network ...iv
LNS Remote Client PC ..iv

Table of Contents..v
Chapter 1 - Installing the LNS Software... 1

System Requirements ..2
3rd Party Software...2
Installing the LNS Application Developer’s Kit...2

Installing the LNS Application Developers Kit Software ...2
Installing the LNS Redistribution Kit..3
Developing Your LNS Application..4

Chapter 2 - What’s New in Turbo Edition ... 5
Performance Enhancements..6
New Features..6

Enhanced Data Formatting...7
GetDataPoint Method ...7
FormatLocales Collection..7

Changeable Network Variable Types ...9
Improved Support for Dynamic Interfaces...9
Improved Monitoring Performance...11

Using Permanent Monitor Sets ..11
Using Temporary Monitor Sets ..12

Availability of Network Resource Information ..13
Enhanced LonMark Interoperability..13
Improved Device Commissioning Performance ...14
System Management Mode Enhancements ...15
Enhanced Configuration Property Management...16
Online Database Validation and Backup...16
Miscellaneous ...17
New LNS Runtime Installations...18

Compatibility ..18
Interface Compatibility ...19
Database ...19
Runtime Component Updates...19
Application Developer’s Kit Include Files ..20
Exception Codes ...20
New Features ...21

Propagating Device Changes While Offnet ...21
Dynamic Functional Blocks ..21
DataPoint Object Improvements..21
Formatting Enhancements ...22
Enhanced LonMark Interoperability ...22

 LNS Programmer's Guide vi

LonWorks Interfaces Control Panel...22
Support for i.LON 1000, i.LON 600 and ANSI/CEA-852 Channels22
Flexible Program ID..23
Modifiable Device-Specific Configuration Properties ...23
Changeable Network Variable Types ..24

Security ...26
Chapter 3 - LNS Overview.. 27

Introduction to LNS ...28
The LNS Programming Model...29
LNS Components..30

LNS Databases and the LNS Server ..30
LNS Object Server ...31

LNS Object Server Hierarchy...32
Network Service Devices ...35
Network Interfaces ..35

LNS Network Services ...35
Network Management ...36
Monitor and Control ..37

LNS Clients...37
Local Client Applications ..38
Lightweight Client Applications...38
Full Client Applications...39
Independent Clients...40

Getting Started...41
Chapter 4 - Programming an LNS Application ... 45

Programming an LNS Application..46
Importing the LNS ActiveX Control ...46

Importing the Control into Visual Basic 6.0 ..46
Importing the Control into Visual C++ ..47

Initializing an LNS Application ..48
Initializing a Local Client Application ...48

Selecting the Access Mode ..49
Specifying the Licensing Mode ...49
Opening the Object Server..50
Selecting a Network Interface ..50
Opening a Network ...51

Initializing a Remote Full Client Application..52
Selecting the Access Mode ..53
Specifying the License Mode...53
Opening the Object Server..54
Selecting a Network Interface ..54
Opening a Network ...55

Initializing a Remote Lightweight Client Application ..57
Selecting the Remote Access Mode...58
Specifying the License Mode...58
Opening the Object Server..58
Opening a Network ...59

Initializing an Independent Client ...60
Opening a System...60

Setting System Parameters...62
Using Transactions and Sessions..64

Managing Transactions ...64

LNS Programmer's Guide vii

Monitoring and Transactions ...65
Using Transactions With Collections...65

Managing Sessions...66
Event Handling...67
Exception Handling..69
Terminating an LNS Application..70

Chapter 5 - Network Management : Installing a Network .. 73
LNS Network Installation Scenarios ..74

Installation Scenarios..75
Engineered Mode Installation ..76
Ad Hoc Installation ...76
Automatic Installation ..76

Engineered Mode..77
Definition Phase...77
Commissioning Phase..81

Commissioning Phase, Multiple Networks..84
Ad Hoc Installation ..85
Automatic Installation ...89

Discovering and Installing Devices ..91
Discovering When New Devices are Attached to the Network ..91
Installing Devices ..93
Discovering When Devices are Detached or Replaced..95

System Management Mode Considerations ...97
lcaMgmtModePropagateConfigUpdates...97
lcaMgmtModeDeferConfigUpdates...97
Intended Usage of the System Management Mode ...98
Changing the System Management Mode ...99

Tracking Device Updates ..99
Tracking System Management Mode Changes ...99
Affects on Network Management Methods and Properties..100

Chapter 6 - Network Management: Defining, Commissioning and Connecting
Devices ... 103

Defining, Commissioning and Connecting Devices..104
Device Interfaces ..104

Program IDs and DeviceTemplate Objects ..106
Device Resource Files ..107

Scope Selectors ..108
The Bigger Picture ...110
Maintaining Device Interfaces With LNS..112

Defining and Commissioning Devices...113
Creating AppDevice Objects..113
Neuron ID Assignment..115

Service Pin ...115
Find and Wink ...117
Manual Entry ..118

Loading Device Application Images ...119
Post-Load State ...120
Reloading a Device's Application ...121

Commissioning Devices ...121
Using the Commission and Commission Ex Methods ..122
Device Validation Options ..123
Device Configuration Considerations ..123

 LNS Programmer's Guide viii

LNS Licensing Considerations ...124
Configuring Devices...124

Generic Configuration Data..124
Application-specific Configuration Data..125

Setting Devices Online ..127
Other Device Management Operations ..128

Testing Devices and Detecting Device Failures...128
Using the OnAttachment Event...129
Performing Diagnostics on LonMarkObjects...130

Replacing Devices ..131
Replacing Network Service Devices ...132

Upgrading Devices ...133
Decommissioning Devices ...135
Moving Devices and Managing Networks With Multiple Channels ..136
Removing Devices ..136

Removing Devices From Multiple Subsystems ...136
Connecting Devices ..137

Connection Rules ...139
Adding Connections ...141
Modifying Connections ..141

Listing Connections and Connection Members...143
Using the OnNodeConnChange Event ..144

Connection Descriptions..144
Chapter 7 - Network Management: Optimizing Connection Resources 147

Using Custom Connection Description Templates ..148
Setting ConnectDescTemplate Properties..149

Optimizing Connection Resources...151
Network Design Time ..152

Alias Options..152
Broadcast Options ...153
Using the AliasOptions and BroadcastOptions Properties ..154

Example Connection Scenario: Building Controls...155
Solving Problems With Your Connection Scenarios..157

Shortage of Groups..157
Shortage of Address Table Space ...157
Shortage of Aliases ..158
Summary of Resource Shortage Recommendations..158

Predictive Strategies...159
Conclusion ..161

Chapter 8 - Network Management: Advanced Topics .. 163
Managing Network Service Devices..164

Upgrading a Network Service Device...164
Moving a Network Service Device ..164

Remote Full Clients...165
Using the PreReplace Method ..166

Using Shared Media...167
Managing Networks with Multiple Channels ..169

Overview of Router Types and Operation ..170
Explicitly Controlling Channel Allocation...172
Explicitly Controlling Subnet Allocation...172

Installing and Configuring Routers..174
Installation Order..175

LNS Programmer's Guide ix

Installing Devices With Multiple Channels...175
Channel Isolation Process...175
Resolving Installation Failures ..176

Moving Devices and Routers Between Channels ..177
Removing Routers..178

Using Dynamic Device Interfaces ...178
Accessing a Device Interface ...179

Adding a Custom Interface to a Device..181
Adding LonMark Functional Blocks To a Custom Interface..181
Adding Message Tags To a Custom Interface ...182
Creating Dynamic Network Variables...183
Tracking Custom Interface Changes ...184

Changeable Network Variable Types ...184
SCPTnvType Configuration Properties..185

Chapter 9 - Monitor and Control .. 187
Introduction to Monitor and Control...188
Temporary and Permanent Monitor Sets ...190

Permanent Monitor Sets ...190
Temporary Monitor Sets..191

Creating Monitor Sets..192
Managing Monitor Sets..193

Adding Network Variable Monitor Points to a Monitor Set ...193
Adding Message Monitor Points to a Monitor Set...195
Setting Monitoring Options...198

Network Variable Monitor Point Options..199
Message Monitor Point Options ...206

Opening and Enabling Monitor Sets...211
Using the Enable Method ...211

Using Network Variable Monitor Points ..212
Explicitly Reading and Writing Network Variable Monitor Points ...213

Example of Explicitly Reading a Network Variable Monitor Point...................................214
Example of Explicitly Writing a Network Variable Monitor Point....................................214

Polled Network Variable Monitoring..215
Setting the Poll Interval ...216
Example of a Network Variable Event Handler ...217

The Implicit Bound Network Variable Monitoring Scenario..218
The Explicit Bound Network Variable Monitoring and Control Scenario...............................219

Fan-in Connections ...219
Fan-out Connections ...220
Creating and Using Host Network Variables..221

Using Message Monitor Points..222
Monitoring Message Monitor Points ..223

Receiving Message Monitor Point Updates ...224
Example Message Monitor Point Event Handler..224

Controlling Message Points...225
Developing Remote Monitor and Control Applications ...225
Tracking Monitor Point Updates...226
System Management Mode Considerations ...228
Directly Reading and Writing Network Variables...229

Data Points and Enumerated Types...230
Using Configuration Properties In a Monitor and Control Application ...231

Device-Specific Configuration Properties...232
Using the GetDataPoint Method ..232

 LNS Programmer's Guide x

Data Source Options ...234
Resynchronizing Configuration Property Values ..236
Performance Considerations ...237

Data Formatting...239
FormatSpec Property...239

Reading the FormatSpec Object ...240
CurrentFormatLocale ..242

Creating FormatLocale Objects..243
Chapter 10 - LNS Database Management ... 247

Overview of LNS Databases ..248
Automatic Database Upgrade..248
Backing Up Network Databases ...249

Backup Method ..249
Validating Network Databases ...250

LNS Database Validation Tool ...250
Validate Method...251
Special Considerations ..252
Using the CompactDb() Method..253

Removing Network Databases ..253
Moving Network Databases...254
Network Recovery...255

Network Recovery Inconsistencies ...256
Performing a Network Recovery ...258
Application-Level Recovery...260
Recovery and Mirrored Connections...261

Chapter 11 - LNS Network Interfaces ... 263
Network Interfaces Overview..264
Standard and High Performance Network Interfaces ...264

Addressing ...267
LonTalk Transactions ...267
Number of Groups ...268
Supporting Multiple Networks...268
Neuron Ids ...268

Using xDriver Interfaces..269
Using LONWORKS/IP Interfaces ...270
Network Interfaces and Network Service Devices...271

Chapter 12 - Director Applications and Plug-Ins.. 275
Introduction to the LNS Plug-In Model ..276
LNS Plug-In API...277
Registering Plug-Ins...277

Registering a Plug-In in the LNS Database ..277
Registering a Plug-In in the Windows Registry ..277
Registering Plug-In Commands in the Windows Registry..278

Accessing Extension Data..278
Implementing an LNS Director Application...278

Implementing the Client-Side LNS Plug-In API...279
Detecting Existing Plug-Ins ..280
Registering Plug-Ins ..281
Detecting Applicable Plug-Ins...282
Launching Plug-Ins..284
Advanced Plug-In Management Tasks...285

Implementing an LNS Plug-In ..286

LNS Programmer's Guide xi

Implementing an LNS Device Plug-In..286
Managing Device Configuration ...286

Chapter 13 - LNS Licensing ... 287
Overview of LNS Licensing and Distribution ..288
Demonstration Mode ..289
Standard Mode ...289

Entering the Standard Mode ..290
Protecting Your Keys ..290

Viewing License Status ...290
Tracking License Events ...291

License Event Types..291
Licensing and Network Recovery ..292
Licensing and Device Manufacturing ...293

Testing Devices ..293
Using the LNS License Utilities..293

Using the LNS Server License Wizard...293
Using the LNS Server License Transfer Utility ..296

Chapter 14 – Distributing LNS Applications ... 299
Distributing LNS Applications..300

Using the LNS Redistributable Maker Utility ..300
Adding the LNS Runtime to an LNS-based Product Installation ..304

Using setup.exe..305
Using _SetupLNS.dll...308
LNS Server and Remote Client Runtime Incompatibility..310
Windows Installer and InstallShield Caveats...310

Chapter 15 - Advanced Topics... 311
File Transfer ...312
Using the OnSystemNssIdleEvent..314
Developing Remote Tools ...314
Developing Mobile Tools ..315

Registering a Mobile Application..316
Moving a Mobile Application to a New Channel ...316

Multi-Threading and LNS Applications ...316
Avoiding Memory Leaks with LNS ...317
Debugging LNS Applications...318
LNS and Line-Safe Expressions..318
LNS and Internet Information Services ...320

Appendix A - Deprecated Methods and Obsolete Files.. 321
Deprecated Methods, Objects, Properties and Events...322

Deprecated Objects ..322
Deprecated Methods ..322
Deprecated Properties ...323
Deprecated Events ...324

Obsolete Files..324
Appendix B – LNS, MFC and ATL... 327

LNS, MFC and ATL ...328
Generating the Legacy MFC Class Wrapper Files..330

Appendix C – LNS Turbo Edition Example Application Suite... 335
LNS Turbo Edition Example Application Suite ...336

Network Management Example ...336

 LNS Programmer's Guide xii

Initializing a Network...337
Performing Network Management Tasks..339
Source Code Mappings ..342

Monitor and Control Example ..344
Source Code Mappings ..348

xDriver Example Applications ..349
Example Director Application...349

LNS Programmer's Guide 1

Chapter 1 - Installing the LNS
Software

This chapter describes how to install the LNS Turbo Edition
software.

 LNS Programmer's Guide 2

System Requirements
System requirements and recommendations for the PC on which the LNS Application
Developer’s Kit, LNS Server or LNS Remote Client redistributions will run are listed in
the System Requirements section on page ii of this document. Before installing any LNS
software, you should make sure the installation PC meets these requirements.

3rd Party Software
Before installing the LNS Application Developer’s Kit, you should note that LNS installs
the following 3rd party software:

• FastObjects 9.5. LNS uses FastObjects 9.5 as its object database engine.

• CrypKey 5.7. LNS uses CrypKey 5.7 as part of its licensing software.

• Microsoft XML Parser 3.0

You should be aware of this if you are using other versions of these products on your
target PC. In addition, you should be aware that when service packs and fixes for these
products are released, it may have ramifications for the LNS runtime software.

Installing the LNS Application Developer’s Kit
To install the LNS Application Developer’s Kit and begin developing an LNS application,
follow these steps:

1. Install the LNS Application Developer’s Kit.

2. If you are planning to redistribute your LNS applications, install the LNS
Redistribution Kit.

3. Start developing your LNS application.

Installing the LNS Application Developers Kit Software
The LNS Application Developer's Kit uses an automated, Windows-based installation
program called SETUP. Because the LNS Application Developer’s Kit CD contains
compressed files, you cannot install the software by copying the files directly to your hard
disk. This section describes how you can install the LNS Application Developer’s Kit.

You should stop all LNS-based applications, utilities and services before performing this
installation. This includes the LNS Server application, the OpenLDV xDriver connection
broker, and any LNS client applications running as Windows services. You will need to
manually restart these services after you complete the installation.

In addition, you must log in as a member of the Administrators user group when
installing the LNS Application Developer’s Kit. To install the LNS software, perform the
following steps:

1. Insert the LNS Application Developer's Kit CD into a CD-ROM drive. If
the start-up window does not automatically start after a few seconds,
start the setup program manually. You can start the start-up program

LNS Programmer's Guide 3

like any other Windows program, e.g. by selecting the Run... item from
the Start menu of the Windows task bar, browsing to the Setup
application, and clicking Open.

2. This opens the LNS Application Developer’s Kit screen. Select Install
Products, and then select LNS Application Developer’s Kit to begin
installing the LNS Application Developer’s Kit software.

3. This opens the Welcome window. Click Next to continue.

4. This opens the License Agreement window. Read the license agreement,
and if you agree to the terms of the license agreement, click I accept the
terms in the license agreement. Then, click Next.

5. This opens the Customer Information dialog. Enter your name in the
User Name text box, and enter your company name in the
Organization text box. If you want the LNS Application Developer’s Kit
to be available to anyone who logs onto your PC, select Anyone who
uses this computer. Or, select Only for me if only you should have
access to the LNS Application Developer’s Kit. Then, click Next to
continue.

6. This opens the Ready to Install the Program window. Click Install to
begin the installation.

7. When LNS has completed the installation, a confirmation dialog will
appear. Click Finish to exit the installation and return to the main LNS
Application Developer’s Kit screen.

 Installing the LNS Redistribution Kit
If you are using the LNS Application Developer’s Kit, you may distribute your LNS
applications, but may not distribute any of the LNS runtime files. If you want to
redistribute LNS runtimes files, you must use the LNS Redistribution Kit. See Chapter
14, Distributing LNS Applications, for more information on redistributing LNS
applications.

In LNS Turbo Edition, the LNS Server and LNS Remote Client installations, which are
created and installed with the LNS Redistribution Kit, have been recreated as Windows
Installer installations. This is to make LNS installations more compatible with recent
versions of Windows. For more information on this change, see New LNS Runtime
Installations on page 18.

You must log in as a member of the Administrators user group when installing the LNS
Redistribution Kit. To install the LNS Redistribution Kit, follow these steps:

1. Insert the LNS Application Developer's Kit CD into a CD-ROM drive. If
the start-up window does not automatically start after a few seconds,
start the setup program manually. You can start the start-up program
like any other Windows program, e.g. by selecting the Run... item from
the Start menu of the Windows task bar, browsing to the Setup
application, and clicking Open.

2. This opens the LNS Redistribution Kit screen. Select Install Products,
and then select LNS Redistribution Kit to begin installing the LNS
Redistribution Kit software.

 LNS Programmer's Guide 4

3. This opens the Welcome window. Click Next to continue.

4. This opens the License Agreement window. Read the license agreement,
and if you agree to the terms of the license agreement, click I accept the
terms in the license agreement. Then, click Next.

5. This opens the Customer Information dialog. Enter your name, company
name, and product serial number in the appropriate text boxes. If you
want the LNS Redistribution Kit to be available to anyone who logs onto
your PC, select Anyone who uses this computer. Or, select Only for
me if only you should have access to the LNS Redistribution Kit. Then,
click Next to continue.

6. This opens the Ready to Install the Program window. Click Install to
begin the installation.

7. When LNS has completed the installation, a confirmation dialog will
appear. Click Finish to exit the installation and return to the main LNS
Redistribution Kit screen.

Developing Your LNS Application
Your applications will access the network services provided by LNS using the LNS Object
Server ActiveX Control. This control gives you access to the LNS object hierarchy, where
each object corresponds to physical and logical objects in your network. Your LNS
applications will retrieve information from the LNS network operating system via the
object hierarchy. You will also use the hierarchy to access device information directly. In
short, everything will be done through the hierarchy.

You do not need to understand or use every object in the hierarchy to write a useful LNS
application. However you should be familiar with most of the objects in the hierarchy.
You should read the remainder of the LNS Programmer’s Guide for information on the
LNS programming model, and detailed instructions on how you should write your LNS
applications.

The next chapter describes the new features that have been added to LNS for Turbo
Edition. The following chapter (Chapter 3, LNS Overview) provides an overview of the
LNS object hierarchy, and a roadmap you can follow through the rest of this document.

LNS Programmer's Guide 5

Chapter 2 - What’s New in

Turbo Edition

This chapter introduces the new features that have been
added to LNS for Turbo Edition, and describes how LNS
performance has improved in Turbo Edition. It also provides
guidelines to follow when upgrading your applications to use
Turbo Edition.

 LNS Programmer's Guide 6

Performance Enhancements
For Turbo Edition, numerous internal changes have been made that will significantly
improve the speed, performance and stability of most LNS applications. This includes
improved internal use of transactions, locking and indexing for faster database
operations.

Internal indexing in some of the major LNS collections has been vastly improved, so the
time required to access items from these collections has been reduced from a linear-time
operation (varying with respect to the size of the collection) to a relatively small,
constant-time operation. For large networks with large databases, this will make for a
noticeable performance improvement when you use the Item property, the
ItemByHandle() method, the ItemByIndex() method, or the
ItemByProgrammaticName() method to retrieve an object from the following
collections:

• AppDevices Collection (when accessed through Subsystem object)

• NetworkVariables Collection

• ConfigProperties Collection

• LonMarkObjects Collection

• MessageTags Collection

• Routers Collection

The introduction of temporary monitor sets in Turbo Edition will improve the
performance of your monitor and control applications. Temporary monitor sets serve the
same purpose as the permanent monitor sets that were introduced in Release 3.0.
However, temporary monitor sets are not stored in the LNS database. As a result, it
takes considerably less time to create temporary monitor sets than it does to create
permanent monitor sets. Temporary monitor sets can only be used in a single client
session by the client application that created them. In contrast, permanent monitor sets
can be used by multiple clients in multiple client sessions. If you are creating a monitor
and control application that does not need to re-use monitor sets and monitor points, you
can maximize your application’s performance by using temporary monitor sets. For more
information on temporary monitor sets, see the next section, New Features.

New Features
This section describes the major features that have been added to LNS for Turbo Edition.
This includes the following topics:

• Enhanced Data Formatting

• Changeable Network Variable Types

• Improved Support for Dynamic Interfaces

• Improved Monitoring Performance

• Availability of Network Resource Information

LNS Programmer's Guide 7

• Enhanced LonMark Interoperability

• Improved Device Commissioning Performance

• System Management Mode Enhancements

• Enhanced Configuration Property Management

• Online Database Validation and Backup

Enhanced Data Formatting
LNS 3.0 featured the introduction of the DataPoint object, which you can use to read
and write to the values of monitor points. Formatting of DataPoint objects is handled
locally, in the client process. As a result, formatting changes made to the value of a
monitor point through a data point by a given application do not affect other applications
that are reading the value of the same monitor point. This eliminates any confusion
caused when separate client applications need to format data independently.

In LNS Turbo Edition, you can create DataPoint objects to read and write the values of
network variables and configuration properties, as well as to the values of monitor
points. LNS Turbo Edition also features several modifications and enhancements to the
DataPoint object that will allow each client application to better format and display the
data it accesses through DataPoint objects. This section describes these changes.

GetDataPoint Method
The ConfigProperty and NetworkVariable objects now include an additional
method, the GetDataPoint() method. This method returns a DataPoint object you
can use to read and write to the value of the configuration property or network variable.
Most of the properties and methods you can use with each DataPoint you access
through a configuration property or a network variable are the same as those you could
use with the DataPoint objects accessed through monitor points in LNS 3.0. For more
information on using DataPoint objects to access network variables, see Directly
Reading and Writing Network Variables on page 229. For more information on using
DataPoint objects to access configuration properties, see Using Configuration Properties
In a Monitor and Control Application on page 231.

In addition, several properties have been added to the DataPoint object in this release:
the SourceOptions, SourceIndex, MinValue and MaxValue properties. You can
use the SourceOptions and SourceIndex properties to identify the type of source
object used to create a data point. You can use the MinValue and MaxValue properties
to identify or set the minimum and maximum values that should be assigned to a scalar
data field. For more information on these properties, see the LNS Object Server Reference
help file.

FormatLocales Collection
The new FormatLocales collection is another feature that you can take advantage of
when using DataPoint objects. Each FormatLocale object contains a series of
properties that reflect a particular geographical area’s conventions for data display.
These conventions affect how data should be displayed in that area, including factors

 LNS Programmer's Guide 8

such as language, measurement system (U.S. or Systeme Internationale), date formats,
time formats, and decimal number formats. The settings of a FormatLocale object
determine how data accessed through the FormattedValue properties of all DataPoint
objects will be displayed when your application uses that FormatLocale object.

Each client application can select the FormatLocale object it will use by passing that
FormatLocale to the CurrentFormatLocale property of the ObjectServer object
before opening any networks and formatting any data. As a result, client applications in
different regions can use their own sets of local formats when displaying data, without
affecting the data formatting used by other clients. This greatly reduces the risk of your
application returning information that is confusing or misleading due to formatting
changes made by another application.

You can access the FormatLocales collection through the FormatLocales property of
the ObjectServer object. When initialized, the FormatLocales collection contains 4
pre-defined FormatLocale objects:

1. UserDefaultRegionalSettings. This is the default value for the
CurrentFormatLocale property. When you use this FormatLocale object, all the
properties will be set based on the user-defined Windows regional settings for the
user currently logged onto the PC running your application. You can change the
regional settings on a PC using the Windows control panel Regional Options applet.
Consult the Microsoft Developer’s Network (MSDN) documentation of the Win32
GetLocaleInfo() function for more information on the Windows regional settings.

2. SystemDefaultRegionalSettings. When you use this FormatLocale object, all
the properties will be set based on the default Windows regional settings on the PC
running the application. The default settings may vary, depending on which
operating system is installed on the PC. Consult the MSDN documentation of the
Win32 GetLocaleInfo() function for more information on the Windows Regional
settings.

3. LonMarkCompatibility. When you use this FormatLocale object, all properties
will be set so that formatted data will be displayed based on the LonMark standards
used prior to LNS 3.0, when localized formatting was not available. In this case,
Systeme Internationale measurement units, LonMark-defined time and date
formats, and U.S. options for everything else, will be used to display all formatted
data.

4. ISO8601DateAndTime. When you use this FormatLocale object, the settings will
be the same as the LonMarkCompatibility settings, except for the localized time
and date formats, which will be based on the ISO 8601 standard. This standard helps
avoid confusion that may be caused by the different national notations used for dates
and times, and increases the portability of computer user interfaces.

The pre-defined FormatLocale objects are read-only, but you can create custom
FormatLocale objects to suit the specific needs of your application with the Add
method of the FormatLocales collection. Note that all custom FormatLocale objects
are instantiated with the same initial settings as the pre-defined
UserDefaultRegionalSettings FormatLocale object described above.

For more information on the FormatLocales collection, see Data Formatting on page
239.

LNS Programmer's Guide 9

Changeable Network Variable Types
Each NetworkVariable object contains a new property called the
ChangeableTypeSupport property, which indicates whether or not you can use LNS to
change the network variable’s type. If the ChangeableTypeSupport property is set to
lcaNvChangeableTypeSdOnly or lcaNvChangeableTypeSCPT, you can change the
network variable’s type. You can do so by modifying the NetworkVariable object’s new
TypeSpec property.

The TypeSpec property returns a TypeSpec object. If a network variable supports
changeable types, you can change the various properties of the TypeSpec object
(ProgramId, Scope, TypeName), and then pass it back to the TypeSpec property to
change the network variable’s type. Alternatively, you can write the TypeSpec property
of one network variable to the TypeSpec property of another network variable. By doing
so, you can change the type of a network variable to any type contained in your local set
of resource files, provided that the device containing the network variable supports the
selected type.

If a network variable supports changeable types via a SCPTnvType configuration
property (as specified in version 3.3 of the LonMark Application-Layer Interoperability
Guidelines), LNS will automatically set the value of the SCPTnvType configuration
property when the network variable’s TypeSpec or SnvtId property is changed.

For more information on LNS support for changeable network variable types, see
Changeable Network Variable Types on page 184.

Improved Support for Dynamic Interfaces
A typical device in a LONWORKS network uses a static interface, consisting of a static set
of LonMark Functional Blocks, member network variables and configuration properties
that define the device’s functionality in the system. In most cases, this functionality is
dependent upon the device’s hardware and defined by the device manufacturer.

Sometimes, there is a need to modify this functionality. For example, controller devices
may be used to control other devices. As a result, the number of components required for
a controller device’s interface is often an attribute of the network configuration (e.g. how
many devices it is controlling), rather than of the device’s hardware. Ideally, the
resources on these controllers would be allocated dynamically, in order to fit the
changing requirements of a given network as devices are added to it.

In Release 3.0, LNS supported dynamic network variables, which solved one aspect of the
dynamic allocation of resources on a controller. However, dynamic network variables do
not convey semantic information to a device or an LNS application in the same way that
LonMark Functional Blocks and LonMark Functional Block membership do. In order to
support the dynamic definition of a controller’s interface in Turbo Edition, LNS has been
enhanced to support additional dynamic interface components.

Dynamic LonMark Functional Blocks and dynamic network variables can only be added
to application devices that support them. For example, Network Services Devices support
up to 4096 dynamic network variables, but do not support dynamic LonMark Functional
Blocks. The number of LonMark Functional Blocks and dynamic network variables that
a device supports is documented in the device’s external interface file and self-
documentation. LNS reads this information from the external interface file when it is

 LNS Programmer's Guide 10

imported, or from the device’s self-documentation when it uploads the device’s device
template.

In LNS, an application device’s interface is represented by an Interface object. The
Interface objects contained by an application device may be the device’s main, static
interface, or they may be custom interfaces that have been added to the device
dynamically, using the new features described in this section. You can access the main
interface of a device through the AppDevice object’s Interface property. Main
interfaces are static interfaces that cannot be modified.

You can access the collection of custom interfaces that have been added to a device
through the device’s Interfaces property. If supported by the device, you can modify
these custom interfaces by adding or removing objects from their NetworkVariables,
LonMarkObjects, and MessageTags collections.

Or, you can add custom Interface objects to a device by accessing the Interfaces
collection through the device’s Interfaces property, and then calling the Add()
method. Once you have created a custom Interface object, you can modify it to suit
your exact needs.

You can access the collection of LonMark Functional Blocks defined on the custom
Interface. A LonMark Functional Block represents a collection of network variables
and configuration properties on a device that perform a related function. For example, a
digital input device with four switches could contain one functional block for each switch.

In LNS, LonMark Functional Blocks are represented by LonMarkObject objects. Each
Interface object contains a LonMarkObjects property, which you can use to access the
collection of LonMark Functional Blocks defined on that Interface. If the interface
supports dynamic LonMark Functional Blocks, you can add and remove LonMarkObject
objects from the collection using the Add() and Remove() methods. In addition, you can
assign and un-assign existing network variables to and from the LonMarkObject objects
using the AssignNetworkVariable() and UnassignNetworkVariable() methods.
You can check if an Interface object supports the addition of dynamic LonMarkObject
objects by reading the Interface object’s DynamicLonMarkObjectCapacity property.
You can check if an Interface object supports the addition of dynamic network
variables by reading the Interface object’s MaxNvSupported and StaticNvCount
properties.

You can also access the collection of network variables defined on an Interface or on a
LonMarkObject through the object’s NetworkVariables property. This property
contains the entire set of NetworkVariable objects defined on that Interface. You
can use the Add() and Remove() methods to modify this collection on your custom
Interface objects as you desire.

In LNS Turbo Edition, each custom Interface object also contains a
DynamicMessageTags collection. You can use this collection to add dynamic
MessageTag objects to the interface. This allows you to add message tags to any device
that supports monitor sets, and use those message tags to send explicit messages from
that device to a group of devices, as with static message tags. For example, consider the
case of a Network Service Device. Network Service Devices do not contain static message
tags. However, you can now add dynamic message tags to the AppDevice object
associated with a NetworkServiceDevice. Once you have added to a message tag to a
Network Service Device, you can connect the message tag to the devices you want to send
the messages to. Following that, you can create a message monitor point on the Network

LNS Programmer's Guide 11

Service Device that specifies the new dynamic message tag as the monitor target. Then,
open the monitor set and use the message monitor point to send messages from the
Network Service Device to the devices bound to the message tag. Note that you can still
use message monitor points to send messages to individual application device, as
described in Chapter 9 of this document.

To help you keep track of changes related to these new dynamic interface capabilities,
the OnNodeIntfChangeEvent, which is fired each time a device’s external interface is
changed, has been modified for Turbo Edition. The OnNodeIntfChangeEvent event
now returns several new values indicating that interface changes related to these new
features have been made. For example, once an application registers for this event, it will
be fired each time a network variable is added or removed from a LonMarkObject, or
each time a LonMarkObject is added to an interface.

For a general overview of device interfaces, see Device Interfaces on page 104. For details
on how you can use the dynamic device interface features described in this section, see
Using Dynamic Device Interfaces on page 178.

Improved Monitoring Performance
As of LNS Turbo Edition, there are two separate types of MonitorSet objects:
permanent MonitorSet objects, which can be used in multiple client sessions, and
temporary MonitorSet objects, which can only be used in a single client session by the
application that created them.

If you need monitor points that will only be used in a single client session, you should use
temporary MonitorSet objects, as it takes less time and database resources to create
them. If you are creating a group of monitor points that you need to use in multiple client
sessions, you must use the permanent MonitorSet objects.

This section describes the major differences between permanent and temporary monitor
sets.

Using Permanent Monitor Sets
Each Network object contains a MyVNI property, which returns an AppDevice object
representing your client's Network Service Device on the network. You can use this
AppDevice to access all the permanent MonitorSet objects that are stored in the LNS
database for your client’s Network Service Device. Echelon recommends that you only
use the MyVni property to access MonitorSet objects when creating permanent
MonitorSet objects, or when modifying the configuration of those MonitorSet objects.
For actual monitor and control operations with permanent monitor sets, use the
CurrentMonitorSets property of the Network object.

The CurrentMonitorSets property returns a collection of all the permanent
MonitorSet objects on a network that are currently stored in your client’s Network
Service Device. This is useful if you have created monitor sets while the system
management mode is set to lcaMgmtModeDeferConfigUpdates (note that prior to
LNS Turbo Edition, this was lcaOffNet). Although those monitor sets exist in the LNS
database and can be accessed through the MyVni collection mentioned in the previous
paragraph, they will not be commissioned into the Network Service Device, and cannot
be used for monitoring operations, until the system management mode is set to

 LNS Programmer's Guide 12

lcaMgmtModePropagateConfigUpdates (note that prior to LNS Turbo Edition, this
was lcaOnNet) and the Network Service Device is updated. The collection accessed
through the CurrentMonitorSets property allows access to all the monitor sets in your
Network Service Device that you can currently open and enable on a network (the
collection accessed through the MyVni property allows access to these monitor sets, as
well as those in the LNS database that have not yet been commissioned into your client
PC’s Network Service Device). You can use all the monitor sets obtained through the
CurrentMonitorSets property as runtime monitor sets, meaning that you can enable
them and use them for monitoring operations. However, persistent changes to their
configuration are not allowed when accessed through this collection. As noted previously,
you should use the collection obtained through the MyVni property when you need to
change the persistent configuration of your client’s local MonitorSet objects.

NOTE: You can access the CurrentMonitorSets collection when running in
independent mode (i.e. without connection to the LNS Server PC).

Using Temporary Monitor Sets
If you need monitor points that will only be used in a single client session, you should use
temporary MonitorSet objects. As of LNS Turbo Edition, you can create a temporary
monitor set with the CreateTemporaryMonitorSet() method of the Network object.

The properties and methods that can be used on a temporary MonitorSet object and the
monitor points it contains are generally the same as those that can be used on a
permanent MonitorSet object and its monitor points. However, if you have been using
permanent MonitorSet objects with LNS 3.0, you should note a few exceptions to this
rule.

Temporary MonitorSet objects cannot be created or used while in independent mode.
The Open() and Close() methods have no effect on temporary MonitorSet objects,
because temporary MonitorSet objects are opened as soon as they are created, and
closed when they are released, or when the client session in which they were created
ends. You should also note that temporary monitor sets are not enabled as they are
opened. You must explicitly enable temporary monitor sets and temporary monitor
points with your application using the applicable Enable method. For this purpose, the
MsgMonitorPoint object now includes an Enable method.

In addition, the DefaultOptions properties stored in MsgMonitorPoint and
NvMonitorPoint objects in temporary monitor sets are read-only. The values applied to
these properties are taken from the temporary monitor set’s MsgOptions or NvOptions
properties.

Monitor points in temporary monitor sets do not support the use of connection
description templates to define certain monitoring options, as monitor points in
permanent monitor sets do. As a result, you must set the connDesc element to NULL
when you use the Add() method to add a message monitor point or network variable
monitor point to a temporary monitor set.

There is one other variance to note when you use temporary MonitorSet objects.
Network variable monitor points in temporary monitor sets cannot be automatically
bound to the monitoring node. As a result, the UseBoundUpdates property of all
temporary monitor sets and monitor points can only be set to False, meaning that you
cannot use LNS to implicitly connect network variables monitored by temporary monitor

LNS Programmer's Guide 13

points to the host PC. However, you can still connect network variables to your Network
Service Device using explicit connections, and utilize these with the
SuppressPollingIfBound property.

For more information on monitor and control in this document, see Chapter 9.

Availability of Network Resource Information
The NetworkResources property has been added to the System object for Turbo
Edition. This property returns a NetworkResources object that provides access to
important network resource information for a system, including the number of
AppDevices and Routers that have been installed on the system, the number of
exclusive and sharable network variable selectors available on the system, and the
number of subnets and group IDs allocated on the system.

This information is useful if you are managing a large system. For example, if you are
writing an application that creates large numbers of multicast connections on a system,
you will need to know how many groups and exclusive selector are available on the
system. Or, if you are merging two LNS databases, you will need to know how many
subnets, groups, and exclusive selectors have been assigned in each database, to make
sure that the merged database will not exceed the limits for each resource.

For more information on the NetworkResources object and its properties, see the LNS
Object Server Reference section of the LNS Application Developer’s Kit help file.

Enhanced LonMark Interoperability
Several changes have been made to LNS Turbo Edition to comply with version 3.3 of the
LonMark Application-Layer Interoperability Guidelines, and to better support the latest
versions of the LonMark standard resource files.

When importing a device interface from an external interface file, previous versions of
LNS would set the Mode property of all LonMarkObject objects defined in the device
interface to one of two values. It would set the Mode property of a LonMarkObject object
to 0 if the LonMarkObject object’s TypeIndex property was in the range of standard
Functional Profile Template (FPT) indices, or to 3 if the LonMarkObject object’s
TypeIndex property was in the range of user-defined FPT indices. Turbo Edition
features automatic scope determination, which means LNS will now search the set of
installed and cataloged resource files to find the most device-specific match for the FPT,
and set the LonMarkObject object’s Mode property based on this determination when
the device interface is imported. If no match is found, LNS will set the LonMarkObject
object’s Mode property to lcaResourceScopeUnknown.

In addition, the ResyncToResources() method has been added to the
DeviceTemplate object. You can use this method to re-synchronize a device template
with modified or newly accessible device resource file information. This may be necessary
if you are upgrading to the current version of the LonMark resource files, or if you
imported a device’s external interface file before the resource files for that device were
available in the resource file catalog.

To complement this change, the ResyncToTemplate() method has been added to the
AppDevice object. You can use this method at any time to re-synchronize the
configuration of an AppDevice with the DeviceTemplate it is using. This may be

 LNS Programmer's Guide 14

necessary if you have recently re-imported a device’s external interface file, or if you have
used the ResyncToResources() method to update the DeviceTemplate that the
device is using.

There are several other changes that you may find useful when using the LonMark
resource files. For example, the TypeInherits property has been added to the
ConfigProperty object. This property indicates whether or not the configuration
property inherited its type from the network variable that the configuration property
applies to. If a configuration property inherits its type, you may need to program your
application to account for changes to the configuration property’s type. For example,
consider a configuration property with the TypeInherits property set to True. If the
configuration property applies to a network variable, and an application changes the
network variable’s type, then LNS would change the data display format of the
configuration property automatically, since the TypeInherits property is set to True.
You would need to know about this change when reading the value of the configuration
property, and you can use this property to keep track of which configuration properties
could be modified by LNS in this fashion.

In addition, the IndexToSNVT property has been added to the LonMarkAlarm object.
The IndexToSNVT property contains the device index number of the network variable on
the LonMarkObject that caused the current alarm condition (i.e. the condition
summarized by the LonMarkAlarm object). This will allow you to quickly identify all
alarm conditions that occur on your network. Note that the LonMarkAlarm object
supports alarming on devices that implement their alarms through SNVT_alarm network
variables, but not through the more recent SNVT_alarm2 type. However, SNVT_alarm2
type network variables can be monitored and controlled using standard monitor and
control techniques.

Finally, the OnLonMarkObjectStatusChangeEvent event has been added to LNS to
allow you to track when an LNS application on your system changes the status of a
LonMarkObject object.

Consult the LNS Object Server Reference help file for more information on the properties
and methods introduced in this section. For general information on device resource files
and device interfaces, see Device Interfaces on page 104

Improved Device Commissioning Performance
When you commission a device using an LNS version prior to Turbo Edition, LNS
validates that the device is on the intended channel, and that it is using a program
interface consistent with the definition in the LNS database. This validation is provided
to catch simple errors that might otherwise cause serious system problems. However,
performing this validation requires the transmission of several messages, which may
significantly increase the time required to commission a slow network with simple nodes.
For systems whose content is extremely well controlled, the benefits of validation may
not be worth the extra time the validation process incurs.

For this reason, the DeviceValidation property has been added to the
DeviceTemplate object. You can use this property to determine what validation steps
LNS will perform when commissioning devices that use that DeviceTemplate. This
may be useful if you are commissioning a large number of devices, and are confident that
the devices contain the correct program information and are installed on the correct

LNS Programmer's Guide 15

channel. In this case, you can modify the DeviceValidation property to bypass parts of
the validation process, and reduce the time it takes to commission those devices.

You should be aware that if parts of the validation process are disabled, the risk of
network configuration problems due to inconsistent device settings will increase. If you
disable the validation process, you should be sure that the Channel and ProgramId
properties of the AppDevice objects using the device template have valid settings before
commissioning, upgrading or replacing those devices. Skipping this validation, and then
commissioning a device with the wrong interface may make subsequent communication
with the device impossible. Note that you can also use this property to force a validation
check of a device, by setting the DeviceValidation property to perform all validation
steps, and then re-commissioning the device.

In addition, the SelfDocConsistency property has been added to the
DeviceTemplate object. This property determines how much LNS will assume about
the self-documentation of devices that are using the device template. This affects how
LNS will read the self-documentation data of those devices, and what level of program
interface validation LNS will perform when commissioning those devices. Some settings
of this property allow LNS to assume higher degrees of self-documentation consistency
among devices using this template, and cause LNS to operate more efficiently when
updating those devices during the commissioning process. However, these settings may
cause problems if the device developer has produced multiple devices that have the same
program ID, but use different self-documentation strings or formats, as version 3.3 of the
LonMark Application-Layer Interoperability Guidelines allows.

For more information on device commissioning, and on the features described in this
section, see Commissioning Devices on page 121.

System Management Mode Enhancements
Several changes have been made to enhance the LNS operation when the system
management mode (MgmtMode property) is set to lcaMgmtModeDeferConfigUpdates.
Before considering these changes, you should note that new names for the system
management mode settings have been provided in Turbo Edition. The old names still
exist in LNS for compatibility reasons, but the documentation refers only to the new
names. The new lcaMgmtModeDeferConfigUpdates value maps to the old lcaOffNet
value, and the new lcaMgmtModePropagateConfigUpdates value maps to the old
lcaOnNet value.

When the system management mode is set to lcaMgmtModeDeferConfigUpdates, all
network configuration changes caused by your application will be applied to the LNS
database, but not to the physical devices on the network. Prior to LNS Turbo Edition,
these changes would be queued and then applied to all the physical devices as soon as
the network management was set back to lcaMgmtModePropagateConfigUpdates.
However, as of LNS Turbo Edition, you can call the new
PropagateDeviceConfigUpdates() method on a device to apply configuration
changes that affect only that device (such as configuration property values) to the device
without changing the system management mode back to
lcaMgmtModePropagateConfigUpdates. This may be useful if you have configuration
changes pending for a large number of devices, and only want to apply them to a subset
of those devices. This method will not propagate updates that affect multiple devices,
such as changes to addresses or connections.

 LNS Programmer's Guide 16

LNS Turbo Edition also includes a new option (lcaReplaceFlagPropagateUpdates)
for the ReplaceEx() method, which you can use to replace an AppDevice or Router. If
you call the Replace() method, or if you call the ReplaceEx() method without
specifying the lcaReplaceFlagPropagateUpdates option, on a device while the
system management mode is set to lcaMgmtModeDeferConfigUpdates, the physical
devices will not be updated with configuration changes caused by the replace process
until the system management mode is set back to
lcaMgmtModePropagateConfigUpdates. You can now use the ReplaceEx() method
with the lcaReplaceFlagPropagateUpdates option to replace devices while the
system management mode is still set to lcaMgmtModeDeferConfigUpdates. This may
be useful if there are configuration changes pending for a large number of devices, and
you want to replace a device without waiting for all of those changes to be applied. A
similar option is also provided for use with the new CommissionEx() method, which you
can use to re-commission a device while the system management mode is set to
lcaMgmtModeDeferConfigUpdates.

Finally the OnSystemMgmtModeChangeEvent event has been added to the
ObjectServer object. Once an application registers for this event, it will be fired each
time the system management mode changes.

For more information on the features described in this section, see Chapter 6, Defining,
Commissioning and Connecting Devices.

Enhanced Configuration Property Management
Several properties have been added to the ConfigProperty object that will allow your
application to better identify the source and configuration of a ConfigProperty object.
For example, in some cases the value stored in the LNS database for a configuration
property may not match the actual value of the configuration property in the physical
device on the network. To help you make this determination, the ValueStatus has been
added to the ConfigProperty object. The ValueStatus property indicates whether or
not the value currently stored in the LNS database for a configuration property matches
the value stored in the physical device on the network.

Two additional properties, the DeviceSpecificAttribute and ConstantAttribute
properties, have been added to the ConfigProperty object. These properties allow you
to read and write the device-specific and constant attributes of the configuration property
with your LNS application.

For more information on these configuration property attributes, see the Configuration
Property Flags section of version 3.3 of the LonMark Application-Layer Interoperability
Guidelines. For more information on configuration properties in this document, and for
information on how you might want to use configuration properties within an LNS
application, see Using Configuration Properties In a Monitor and Control Application on
page 231.

Online Database Validation and Backup
LNS Turbo Edition features two new ways to help you maintain your LNS network
databases: online backup and database validation. You can perform database validations
using the LNS Database Validation Tool, or by calling the Validate() method on a
Network object. When you perform a database validation, LNS will process the contents

LNS Programmer's Guide 17

of an entire network database, and report any errors or inconsistencies it discovers. It
can optionally repair some of these errors during the validation process. Inconsistencies
and errors that may be discovered during the database validation procedure include
orphan objects (inaccessible objects in the database), broken interfaces, and duplicate
objects.

You can access the LNS Database Validation Tool by selecting LNS Database
Validator from the Echelon LNS Utilities group in the Windows Programs menu.
Consult the online help for the LNS Database Validation Tool for more detailed
information on how to use the utility.

You can also perform a database validation with your own LNS application by calling the
Validate() method on a network. LNS will then start a transaction and validate the
network database. When the validation is complete, the method returns a
DatabaseValidationReport object containing information summarizing the results of
the validation. This is the same set of information that would be provided by the LNS
Database Validation Tool if you used it to perform a validation on the same database,
including descriptions of all the errors discovered, all the errors that were repaired, and
all the errors that were not repaired.

While the ability of the new LNS database validation feature can be used to repair many
of the errors that might occur in your network databases, you should not consider it a
replacement for consistent, regular back-ups of your network databases. To facilitate
database back-ups, the Backup() method has been added to the Network object. You
can call this method on any local network to make a backup copy of the network
database, and export the backup copy to a local folder of your choice. This method is quite
useful, as you can use it to back up a network database while the network and system
are open, and while clients are attached. Echelon recommends that you use this feature
in conjunction with the database validation feature to perform regular, validated
backups of your network databases.

For more information on the database validation feature, see Validating Network
Databases on page 250. For more information on the online backup feature, see Backing
Up Network Databases on page 249.

Miscellaneous
LNS Turbo Edition features several other changes you may find useful as you develop
your applications. Consult the LNS Object Server Reference help file for more information
on these features.

• The RemoveEx() method has been added to the Networks collections. The
RemoveEx() method allows you to specify whether the network database is to be
deleted when the network is removed from the collection. If you do not delete the
network database, you can then restore the network later, without having to re-
create the database. This may be useful if you want to store network databases
on a central file server and add them to (or remove them from) any LNS Server
PC on demand.

• The CopyWithParent property has been added to the Extension object. An
Extension object represents user-defined data. You can use the
CopyWithParent property to indicate whether or not the Extension object
should be copied when its parent object is copied. This may be useful if you are
writing an application that is copying an object containing a large Extensions

 LNS Programmer's Guide 18

collection. You may not want the application to copy every extension record
stored in the object. You can use this property to mark which extension records
the application should copy.

• The ConstNodeConnChangeEvent event now returns additional values.
Previously, the possible values that could be returned for the event’s
ObjectChangeType element were contained in the ConstObjectChangeTypes
constant. Those values are now stored in the ConstNodeConnChangeType
constant, which includes more detailed information. The values of the
ConstNodeConnChangeTypes constant now map to the values of the
ConstObjectChangeTypes constant, so this change will not affect applications
that were written using pre-Turbo Edition versions of LNS.

• The ItemByProgrammaticName() method has been added to the
LonMarkObjects and NetworkVariables collections. This allows you to
retrieve a LonMarkObject or NetworkVariable from its respective collection
by its programmatic name.

• The AliasUseCount and AliasCapacity properties have been added to the
AppDevice object. These properties indicate how many aliases are being used on
a device, and how many are available, respectively.

• You can now use the OnSessionChangeEvent event to keep track of when the
Network Service Device is offline. You will need to know this because polling is
suspended and monitor and control events will not be delivered to your
application while the Network Service Device is offline. Once your application
registers for this event, is will be fired each time the state of your client’s
Network Service Device changes from the online state to the offline state, or vice
versa.

New LNS Runtime Installations
The LNS Server and LNS Remote Client installations, which are created and installed
with the LNS Redistribution Kit, have been re-created as Windows Installer (a.k.a.
Microsoft Installer) installations in order to make LNS Turbo Edition installations more
compatible with recent versions of Windows. This has important implications for how
the LNS redistribution installations should be installed. For more information, please
see Chapter 14, Distributing LNS Applications.

Compatibility
Echelon's goal is to allow easy integration of new LNS releases into your LNS
applications. COM interface compatibility allows for the possibility of “drop in”
replacement of one LNS release with another, and Echelon strives to design new features
and fix defects in a way that supports this. The following sections provide details on
several LNS compatibility issues you should consider when upgrading to LNS Turbo
Edition. Some of these issues are applicable to all LNS releases, and some apply
specifically to LNS Turbo Edition.

LNS Programmer's Guide 19

Interface Compatibility
LNS follows the Microsoft COM interface guidelines for maintaining interface
compatibility. Methods and properties can be added to the LNS OCX interface, but
existing interfaces cannot be modified. Automated comparison tools are run on the LNS
interface at each release to verify that the COM interface rules are followed.

Because COM methods and properties may not be modified or removed from an interface,
an established interface can become cluttered with obsolete and duplicate methods and
properties. As a result, Echelon has introduced the concept of a deprecated interface to
provide better guidance for optimal use of LNS Turbo Edition. Deprecated properties,
methods and objects are marked as such in the LNS Object Server Reference help file.
This help file also lists which version each property, method and object was introduced
in, to assist the development of applications that work with multiple versions of LNS.
Note that in the LNS Object Server Reference help file, Turbo Edition is referred to as
Release 3.20, and all properties, methods and objects marked as added to LNS in Release
3.20 are new in Turbo Edition.

For a list of deprecated interfaces in Turbo Edition, see Appendix A, Deprecated API and
Obsolete Files. Remember that deprecated interfaces are generally deprecated because
they do not provide the complete functionality that alternative interfaces provide.
However, most of these interfaces are still included in the LNS Object Server for
backward compatibility reasons. Deprecated features that are no longer implemented or
supported are marked as such in Appendix A.

Database
LNS uses the FastObjects database engine to store its objects. When new features are
added, the database schema must change to support them. The result is that LNS
databases are not usually backward compatible. An LNS Turbo Edition database will not
be accessible by any application using LNS 3.0, or versions of LNS prior to that.

However, LNS databases are always forward compatible. When an application using
LNS Turbo Edition opens an LNS 3.0 database, the database will be automatically
converted to LNS Turbo Edition format in a potentially time-consuming process. Since
database conversion is a one-way process, Echelon recommends that backup databases
be kept as long as there is any question about rolling back to a previous LNS Server
runtime. Note that you cannot use the new Backup() method to do so, as this will
upgrade the database to Turbo Edition format.

LNS Service Pack releases, starting with LNS 3.04, have not modified the database
schema, and Echelon will continue to follow this discipline in future Service Packs. If a
Service Pack must modify the schema in order to fix a serious problem, the Service Pack
read-me file will note that fact prominently.

Runtime Component Updates
In general, LNS Service Packs may not be uninstalled. Patching technology, including
Windows Installer patches, does not generally support uninstallation of patch updates.
Since LNS databases are usually not backward compatible, the updated LNS Turbo
Edition installation will update the LNS global database and individual network
databases as they are opened, further complicating any attempt to return to a previous
version of LNS.

 LNS Programmer's Guide 20

LNS Turbo Edition servers and clients do not interoperate with clients and servers of
other LNS versions. When updating an LNS site with a central server and remote
clients, the LNS Server PC must be updated first. LNS server-independent mode,
introduced in LNS 3.0, will allow any remote clients that run only in server-independent
mode to be stopped, updated, and restarted some time after the server is updated.
Remote clients that do not operate in server-independent mode should be updated when
the LNS Server PC is. Live updates of LNS servers or clients are not supported, and
server-independent mode is the only LNS client mode that does not require a constant
client-server connection, so this is the only distributed update scenario that Echelon
supports. For more information on server-independent mode, see Independent Clients on
page 40.

Application Developer’s Kit Include Files
The LNS Turbo Edition Application Developer’s Kit has changed from previous LNS
versions in that it does not install any include files or “class wrapper” files for using the
OCX with C++ projects. There were two problems with these files:

• Only C++ was supported. None of the other supported development
environments, such as Visual Basic 6.0, could use the C++ include files.

• With the same definitions in two places (the include files and on the OCX), the
definitions sometimes became inconsistent.

The recommended solution in this and all subsequent releases is to provide all of the
necessary constants on the OCX interface, accessible to C++ users through the #import
“lcaobjsv.ocx” named_guids rename_namespace("lca") directive. For more
information on this, see Chapter 4. As an alternative, you could generate the old class
wrapper files within your project. For more information on this, see Appendix B, LNS,
MFC and ATL.

Remember that if you are not using C++ to develop your LNS application, you can
continue accessing the OCX as in your previous version of LNS.

Exception Codes
As new features are added or defects fixed, some existing LNS features will add new
exception codes to provide more useful information about new or modified failure cases.

For example, prior to Turbo Edition, LNS threw the
SRSTS_NEURON_VERSION_MISMATCH exception (from the obsolete include file
ns_srsts.h) when an attempt to load an application image into a device failed because the
Neuron model number or the system image version number of the device did not match
that of the linked application. LNS will now distinguish these two exception cases. The
following new exception codes have been defined:

lcaErrNsNeuronModelMismatch "Incompatible Neuron model number."

lcaErrNsFirmwareVersionMismatch "Incompatible firmware version number."

The lcaErrNsFirmwareVersionMismatch value maps to the (now obsolete)
SRSTS_NEURON_VERSION_MISMATCH code, since it is more likely that the system
image version number would differ than the neuron model number.

LNS Programmer's Guide 21

Common exception codes for particular methods can and should be handled specially to
provide more guidance to your particular end-user. However, because the complete set of
exception codes that can be thrown for a given method can be large, and because all
exception codes must be handled by your application, you should also use a generic error
handler in your application that will handle all errors returned by LNS.

New Features
When adding new features to LNS, Echelon must make compatibility tradeoffs in order
to improve functionality and performance. Some of the new features described earlier in
this chapter may introduce compatibility issues into your application, so you should
consider the following information carefully when integrating these new features.

Propagating Device Changes While Offnet
The commission and replace operations behave identically in LNS Turbo Edition as in
prior versions of LNS, unless the new “propagate” flags provided with the ReplaceEx()
and CommissionEx() methods are specified by the LNS application.

The new AllowPropagateModeDuringRemoteOpen property is simply an alias for the
RemoteIgnorePendingUpdate property. The RemoteIgnorePendingUpdate property
is marked as hidden, but reading and writing the property is still supported by LNS
Turbo Edition.

Opening a remote Full client application with LNS Turbo Edition may succeed while the
system management mode is set lcaMgmtModeDeferConfigUpdates, even if there are
pending updates for other devices, and the RemoteIgnorePendingUpdate flag is
False. The Network Service Device will be re-commissioned in this case. In prior
versions of LNS, the open would fail, and return an error.

Opening a remote Full client application with LNS Turbo Edition while the system
management mode is set to lcaMgmtModeDeferConfigUpdates, and the
AllowPropagateModeDuringRemoteOpen property is set to True, may result in
commissioning the remote Network Service Device without propagating pending updates
to other devices. In prior versions of LNS, this would always result in propagating all
pending changes.

Dynamic Functional Blocks
Your application might currently assume that it will find all defined LonMarkObject
objects for a device by accessing the DeviceTemplate object’s interface. However, the
dynamic LonMarkObject objects on a device do not appear in the interface of the
device’s DeviceTemplate object. Another possible problem is if your application
assumes that the collection index assigned to a LonMarkObject is one greater than the
value of the LonMarkObject object’s Index property. This relationship happens to hold
for static LonMarkObject objects, but may not for dynamic LonMarkObject objects.

DataPoint Object Improvements
The DataPoint object was introduced in LNS 3.0 to allow convenient access to the data
contained in monitor points. The feature allowing access to individual DataPoint fields
contained several defects that may not allow a current implementation of the feature to

 LNS Programmer's Guide 22

be compatible with a previous implementation. However, in this release, the DataPoint
object provides new functionality – including consistent field-by-field formatting between
network variables and configuration properties, and client-specific formatting – that is
the new standard for LNS data formatting.

Formatting Enhancements
The default Formatting Locale has been changed in this release from the System Default
Locale to the User Default Locale. In recent versions of Windows, it has become more and
more difficult to set System Default Locale settings, and Echelon made this change in
order to make current applications easier to use. In most systems, the System and User
Default Locales are the same, and this change should not cause a noticeable difference in
operation. Consult the MSDN documentation of the Win32 GetLocaleInfo() function
for more information on the System and User Default Locales, as LNS uses this function
to retrieve the Windows locale settings.

Enhanced LonMark Interoperability
Under some conditions, LNS may use the new automatic scope determination feature to
set the Mode property of a LonMarkObject object to values that were not previously set
automatically. In previous versions of LNS, the Mode property of each LonMarkObject
object would only be automatically set to 0 or 3. In Turbo Edition, the Mode property of
each LonMarkObject object may be automatically set to any of the values of the
ConstResourceScope constant when an external interface file is imported. For more
information on this, see the help pages for the LonMarkObject object’s Mode property
and the ConstResourceScope constant in the LNS Object Server Reference help file.

LonWorks Interfaces Control Panel
The LONWORKS Interfaces Control Panel Applet was introduced in LNS 3.07 to support
the i.LON 10 Ethernet Adapter and the i.LON 100 Internet Server. In this release, the
LONWORKS /IP Channels Control Panel application introduced in LNS 3.0 has been
merged with the LONWORKS Interfaces Control Panel Applet to provide this similar
functionality through a single utility. If your user documentation provided directions for
using the LONWORKS /IP Channels Control Panel, it should be updated to direct them to
the new, merged LONWORKS Interfaces application in the Windows Control Panel.

Support for i.LON 1000, i.LON 600 and ANSI/CEA-852 Channels
LONWORKS /IP channels in LNS Turbo Edition require the use of the new Echelon
LONWORKS/IP Configuration Server. This means that if a site using an i.LON 1000
Internet Server upgrades from LNS 3.0 to LNS Turbo Edition, they must also upgrade
the i.LON 1000 Configuration Server. To mitigate this requirement, the LNS Server
Turbo Edition installation installs the Echelon LONWORKS/IP Configuration Server. LNS
Turbo Edition and the new Echelon LONWORKS/IP Configuration Server support
backward compatibility with the i.LON 1000 Internet Server by allowing the creation of,
and connection to, LonWorks/IP channels that are compatible with the i.LON 1000
Internet Server. If the Echelon LONWORKS/IP Configuration Server is not running on the
same PC as the LNS Server installation, the Echelon LONWORKS/IP Configuration

LNS Programmer's Guide 23

Server installer will be available to LNS customers on the Echelon web-site, and on the
LNS Application Developer’s Kit CD for redistribution by licensed LNS developers.

For more information on the i.LON 1000 Internet Server and the i.LON 600
LONWORKS/IP Server in this document, see Chapter 11, LNS Network Interfaces.

Flexible Program ID
By default, LonMark devices with a given program ID are expected to have the same self-
documentation data format. LNS has never verified that the number and type of
LonMark Functional Blocks on two devices sharing a program ID match. However, such
inconsistencies would normally be detected in previous releases because LNS checked the
self-documentation string length, and did a spot check on the node self-documentation
null terminator. In LNS Turbo Edition, LonMark devices are allowed to have different
self-documentation strings by default. Therefore, LNS will no longer detect many
inconsistencies in LonMark self-documentation data by default.

Modifiable Device-Specific Configuration Properties
There are two main behavioral differences an LNS application might observe when
running LNS Turbo Edition instead of a previous LNS version, due to the changes made
to support modifiable device-specific configuration properties.

The way LNS reads a modifiable device-specific configuration property with the
ConfigProperty object’s GetElement() or GetRawValues() methods, or the Value or
RawValue properties, has changed. Prior versions of LNS did not recognize modifiable
device-specific configuration properties as any different than “normal” configuration
properties, and these properties and methods would return data from the LNS database
(if the value in the database was known). Therefore no contact with the device was
necessary.

In LNS Turbo Edition, these methods and properties read the data directly from the
device. As a result, reading these values in LNS Turbo Edition is likely to take longer
than in previous releases, and may return different data values. If the value cannot be
read from the device, LNS will return an error, whereas in previous releases it would not.
This is consistent with the treatment of constant device-specific configuration properties,
and is the same as if the value in the database was not present. If the value is not
known, and the system management mode is set to
lcaMgmtModeDeferConfigUpdates, prior versions of LNS would return an exception,
whereas LNS Turbo Edition will attempt to read the value from the device.

In prior versions of LNS, constant device-specific configuration properties would never be
set in the database. As of LNS Turbo Edition, operations such as calling the
DownloadConfigurationProperties() method with the
lcaConfigPropOptSetDefaults option set will cause constant device-specific
configuration property values to be stored in the database, as well as other configuration
property values.

Likewise, calling the UploadConfigurationProperties() method may store a
constant device-specific configuration property value in the database. Using the new
operation to read configuration property values from the database will allow an
application to see the database copy of the constant device-specific configuration
property. However, none of the methods or properties available in previous releases will
read the database version of a constant device-specific configuration property. Under no

 LNS Programmer's Guide 24

circumstances will LNS write a constant device-specific configuration property to a
device unless the configuration property’s DeviceSpecificAttribute property is set
to False.

Changeable Network Variable Types
This feature has been supported to some extent for several LNS releases. Version 3.3 of
the LonMark Application-Layer Interoperability Guidelines introduced a new, standard
mechanism for supporting network variables with changeable types and sizes. The
version 11 LONMARK standard resource files include a new SCPTnvType configuration
property type that a network manager can use to inform an application device of a
change to a network variable type and size. The version 11 resource files also include a
new SCPTmaxNVLength configuration property type, to be implemented as a constant
configuration property, to document the maximum legal length of a given network
variable.

Compatibility Case 1 – Writing Compatible Network
Management Tools and Plug-Ins
Some network management tools use the SCPtnvType configuration property to change
the type of a network variable. They set the value of the configuration property to match
the new type they want the network variable to use, and they also set the value of the
SnvtId property in the LNS database. This use-case demonstrates how a plug-in that
was designed to manage devices using SCPTnvType configuration properties with
previous versions of LNS will work using LNS Turbo Edition.

A) Tools that set the SCPTnvType configuration property first should follow these steps:

1. Get the SCPTnvType configuration property for the network variable.

2. Change its value. When using LNS Turbo Edition this will automatically
set the network variable’s SnvtId property to the correct value (0 for
UNVTs, >0 for SNVTs).

3. Set the value of the SnvtId property in the LNS database to match the
type chosen in step 2 (0 for UNVTs, >0 for SNVTs). When using LNS
Turbo Edition this step has no effect, since the SnvtId property was
already modified by the previous step.

B) Tools that set the SnvtId property first should follow these steps:

1. Set the SnvtId property in the LNS database. When using LNS Turbo
Edition, if the SnvtId represents a standard type (non-zero), LNS will
automatically set the SCPTnvType configuration property for the
network variable.

2. Get the SCPTnvType configuration property for the network variable.

3. Change its value. When using LNS Turbo Edition, this step has no effect
if the SnvtId property was set to a standard type in step 1, since the
configuration property value would have already been set at that point.

For either scenario, the same end results will apply. The network variable’s type will be
successfully changed in the LNS database, an event will be generated to indicate this,

LNS Programmer's Guide 25

and the value of the SCPTnvType configuration property will be updated to inform the
device of the network variable type.

For ideal performance, an application using versions of LNS prior to LNS Turbo Edition
should modify the SnvtId property first, and then the SCPTnvType configuration
property. The operations should be performed in the same transaction. However,
applications using LNS Turbo Edition and later should use the TypeSpec property for all
network variable type changes, since this method supports user-defined types and
standard types, is more efficient, and does not require the application to explicitly
manage the SCPTnvType configuration properties.

Compatibility Case 2 – Devices That Support Old and New Style
NV Type Management
Consider a device that supports both the old SI/SD method of network variable type
modification, and can read the SCPTnvType configuration property. Such an application
should:

1. Define the default value of the network variable with its type_category
set to NVT_CAT_NUL.

2. Honor the SI/SD value if the configuration property’s type_category is
NVT_CAT_NUL (i.e. use the SNVT_ID stored on the device). Otherwise,
honor the value of the configuration property.

First, consider the device being managed by an application using an LNS version prior to
Turbo Edition that does not update the SCPTnvType configuration property. Changes to
the network variable type will result in updating the SI/SD data on the device. The
application device will then use the SI/SD information because the value of the
SCPTnvType configuration property value will remain invalid.

Now consider how an upgrade to Turbo Edition will affect this application. LNS will
recognize that the configuration property value is invalid (its type_category set to
NVT_CAT_NUL) or unknown, so LNS will continue to use the SI/SD to inform the device
of the network variable type. A replace or recommission operation on the device will set
the SI/SD information to be updated, based on the type assigned to the network variable
in the LNS database. Changing the network variable type to a standard type in the LNS
database will cause LNS to update the SCPTnvType configuration property
automatically and to stop updating the SI/SD data for the network variable. The
application will honor the configuration property. Changing the network variable type to
0 (indicating a non-standard type) will cause LNS to update the SCPTnvType
configuration property with a category of NVT_CAT_NUL, and set the SI/SD value in the
physical device to 0.

Next, consider a device being managed by an application that uses the SCPTnvType
configuration property properly, using an LNS version prior to Turbo Edition. In this
case, the application device honors the value of the SCPTnvType configuration property,
since it is valid. When upgrading to LNS Turbo Edition, the LNS database conversion
will recognize that the configuration property is valid, and will update the network
variable type based on that value. A subsequent replace operation will not update the
SI/SD data for that network variable.

 LNS Programmer's Guide 26

Security
New security features have been added to LNS since Release 3.0 to protect against
unwanted access to sensitive data. In LNS 3.07, Echelon introduced the OpenLDV
xDriver to support a new class of remote network interfaces, including the i.LON 10
Ethernet Adapter and the i.LON 100 Internet Server. The TCP/IP link to those new
interfaces includes MD5 authentication and sequence numbering to prevent
unauthorized access or replay attacks on the link. In LNS Turbo Edition, RC4 encryption
is also used when passing LonWorks authentication keys over the link.

For more information on the OpenLDV xDriver, see the OpenLDV Programmer’s Guide,
xDriver Supplement. This document can be downloaded from Echelon’s website at:

http://www.echelon.com/support/documentation/default.htm

http://www.echelon.com/support/documentation/default.htm

LNS Programmer's Guide 27

Chapter 3 - LNS Overview

This chapter provides an overview of the LNS network
operating system. It introduces the various LNS components,
and describes the fundamental network services provided by
LNS. For an introduction to LONWORKS networks, see the
Introduction to the LONWORKS System document, which is
available for download from Echelon's web site at
http://www.echelon.com/.

http://www.echelon.com/

 LNS Programmer's Guide 28

Introduction to LNS
LONWORKS Network Services (LNS) is the control networking industry's first multi-client
network operating system. Much like a standard operating system, which implements
the fundamental operating tasks of a computer, the LNS network operating system
encapsulates common LONWORKS network operations, providing the essential directory,
installation, management, monitoring, and controlling services required by most network
applications. In addition, LNS provides a standard interface that enables multiple
network applications from multiple vendors to interoperate.

The LNS architecture combines the power of client-server architecture with object-
oriented, component-based software design. LNS also incorporates Internet Protocol (IP)
support for remote applications, and it works with the most common development
platforms, including rapid application development (RAD) tools, thus offering the fastest
way to bring network control on-line with all your other information systems. With LNS,
multiple system integrators, managers, and maintenance personnel can simultaneously
access network and application management services and data from separate client tools.

Figure 3.1 Sample Network Managed by LNS

The LNS network operating system provides the following benefits:

• Reduced commissioning time and cost. With LNS, multiple installers can
work on the same system at the same time, without conflicts. Each tool is
a client to the LNS Server, allowing multiple installers to work in
parallel without database synchronization problems.

Since remote client tools do not need to contain a network database, they can

LNS Programmer's Guide 29

be anything from a remote monitoring station, to an installation laptop PC
using wireless networking. Each client tool can have a different user
interface, optimized to the particular network being managed (e.g. material
handling, access control, gas analysis, or HVAC) or to the skill set of the user.
By building application-specific knowledge into network tools, all or part of
the commissioning process can be automated, further reducing
commissioning time and training cost.

• Simplified system integration. By defining the basic object framework as
well as the higher-level component specifications, the LNS network
operating system provides a basis for tools to interact and communicate
with each other. Interoperable tools greatly simplify system integration,
and the use of plug-in applications allows system integrators to add new
features to their LONWORKS systems quickly and at low cost.

• Easy customization. By allowing tools to interoperate, LNS allows
developers to create custom system-level or device-level tools that
complement their systems or devices. For OEMs, this provides another
way to add value to their systems by embedding application-specific
knowledge into their tools. For integrators, system-to-system
communication reduces the need to understand the implementation
details within a given system. For end-users, this results in disparate
systems that work together, leading to more efficient operation, higher
yield, and greater comfort.

• Greater access to data. LNS provides users with the ability to deploy
Human Machine Interface (HMI), Supervisory Control and Data
Acquisition (SCADA), and data logging stations. Because of its client-
server architecture, there are no databases to copy or redundant updates
to make. Users no longer need to worry about tools losing synchronization
with the network’s configuration. LNS tracks the requirements of each
tool, and automatically informs them of configuration changes.

• Increased system up-time. With LNS, repair technicians can plug tools
into the network at any point, and access all network services and data.
Since multiple tools can interoperate on the same network, multiple
technicians can diagnose problems and make repairs simultaneously,
with no need to coordinate their actions or even to be aware of one
another. By building application-specific knowledge into their tools,
OEMs can further reduce system downtime by automating fault
detection, isolation, reporting, and repair.

• Transparent IP network communication. LNS allows tools to access
LONWORKS networks over TCP/IP links. Any workstation connected to an
LNS Server can run LNS applications that operate like local tools. This
allows users to easily integrate LNS-based networks with Internet-based
applications to create powerful enterprise-wide solutions, as well as
allowing for a high-speed connection using existing LAN infrastructure.

The LNS Programming Model
The LNS network operating system provides a compact, object-oriented programming
model that reduces development time, host code space, and host processing
requirements. LNS uses a hierarchy of objects that correspond to physical network
devices and logical objects to represent a LONWORKS network. Each object provides a set
of methods, properties, and events that implement the functionality and configuration of

 LNS Programmer's Guide 30

the network device represented by the object. This is described in more detail later in the
chapter.

LNS leverages Microsoft’s COM and ActiveX technologies, the Windows standard for
component-based software, to simplify the development of network applications for
Windows hosts. Using LNS, developers are free to take advantage of the support for
ActiveX and COM components built into Windows development tools.

COM interfaces are 32-bit, language-independent programmable objects that can be used
with a variety of development tools, such as Microsoft Visual Basic and Visual C++.
These tools make COM interface calls and property assignments look like native
language calls and assignments. LNS applications can therefore be implemented without
knowing the underlying ActiveX and COM mechanisms.

LNS Components
The LNS Programming Model is comprised of the following major components. These
components are described in the following sections.

• LNS Databases and the LNS Server

• LNS Object Server

• Network Service Devices

• Network Interfaces

LNS Databases and the LNS Server
LNS uses two types of databases to store and maintain the configurations of your
LONWORKS networks: the LNS global database, and a set of LNS network databases.
These are high-performance disk-based databases with in-memory caching to optimize
repeated access to data.

The PC containing the LNS global database acts as the LNS Server. The location of the
global database is maintained in the Windows Registry, and can be accessed by reading
the DatabasePath property of the LNS ActiveX Object Server Control. By default, the
global database is stored in the ObjectServer\GlobalDb subfolder of the LONWORKS
folder. The location of the global database will be set when LNS is installed and should
never be changed, as LNS applications must access the same global database if they are
to interoperate.

The global database contains the Networks collection, which is the group of LONWORKS
networks that are being managed with the LNS Server. Each of these networks has its
own network database. The network database contains the network and device
configuration information for that particular LONWORKS network. The location of each
network database is specified when a network is created, and stored in the global
database. Each LNS network database also contains extension records, which are user-
defined records for storing application data. For more information on this, see the online
help for the Extensions object in the LNS Object Server Reference help file.

LNS applications can run as local client applications, meaning that they run on the same
PC as the LNS Server and the global database. Or, they can run as remote client
applications, meaning that they do not run on the same PC as the LNS Server. This is
shown in Figure 3.2.

LNS Programmer's Guide 31

 Local Client Application(s)

LNS Server

LNS Global
Database

LNS Network Database
Network 1

LNS Network Database
Network 2

LNS Network Database
Network 3

LNS Server Utility

Remote Access

Remote Client Application(s)

Figure 3.2 LNS Architecture

The gray-shaded blocks in Figure 3.2 represent the LNS Server PC, and items on the
LNS Server PC. This includes the LNS global database, any local LNS applications
running on the LNS Server PC, and the LNS Server utility.

In Figure 3.2, the global database is connected to three network databases, indicating
that there are three networks defined in the global database. Note that the network
databases are not necessarily stored on the same PC as the global database and the LNS
Server.

As shown in Figure 3.2, the LNS Server utility also runs on the LNS Server PC. You can
use the LNS Server utility to enable remote LNS applications to access the LNS
databases and the LNS Server. You must enable the LNS Server with this
utility to perform network management applications with remote LNS
applications. The LNS Server utility, the different remote client types, and the media
they use to connect to the LNS Server, are described in detail later in this chapter.

LNS Object Server
All local and remote LNS applications must reference the LNS Object Server to access
the LNS Server and the LNS databases. Once an application has referenced the LNS
Object Server, it can read and write LNS object properties, and call LNS object methods.
The LNS Object Server routes each request to the appropriate LNS database.

You can reference the LNS Object Server within your application by importing the LNS
ActiveX control into your development environment, as described in the Importing the
LNS ActiveX Control section on page 46. The LNS Object Server provides all the network
services you can use with LNS. It maintains the network databases that store the
configuration of your LONWORKS networks, and enables and coordinates multiple points
of access to its services and data.

 LNS Programmer's Guide 32

Applications access the services provided by the LNS Server using the LNS Object
Server. The LNS Object Server is a COM server that provides an interface, independent
of any specific programming language, to the LNS Server and the LNS database.

The LNS Object Server provides the resources to manage and record the configuration
information for any LONWORKS network within the following constraints:

• Up to 100 open networks per application when operating in server-independent
mode, and up to 50 open networks per application when operating in server-
dependent mode. The differences between the server-independent and server-
dependent modes are described later in this chapter in the LNS Clients section.

• Up to 10 remote LNS client applications, and an unlimited number of local
applications, per network. These applications may invoke services on the LNS
Server, provide their own subsystem-specific services, properties and events, as
well as act as application nodes in the network. Some applications can open more
than one network at the same time.

• Up to 1,000 channels.

• Up to 1,000 routers.

• Up to 32,385 application devices.

• There are up to 12,288 network variable selectors in each network. A network
variable's selector is a 14-bit number used to identify connected network
variables. All network variables in a given connection use the same network
variable selector. The LNS Server shares a network variable selector among
connections if the connections share one or more network variables. LNS can
intelligently reuse network variable selectors; thus, an LNS-managed network is
not limited to 12,288 connections.

• Up to 4,096 network variables on each host-based device, and up to 62 network
variables on each device hosted on a Neuron Chip or Smart Transceiver.

LNS Object Server Hierarchy
The LNS Object Server defines a set of objects, properties, methods and events that
represent the physical attributes of your network and their configurations. The objects
are grouped together in a hierarchical fashion, such that the ObjectServer object (i.e.
the object representing the LNS Object Server) is at the top of the hierarchy.

The ObjectServer object contains a collection of Network objects, each of which
represents a network defined in the global database that the LNS Object Server can
administer. Each Network object contains a System object representing the network’s
system, and each System object contains a set of Subsystem objects that represent
logical or physical partitions of that particular network. Each Subsystem object contains
a collection of AppDevice objects, which represent the application devices defined in that
subsystem, and Router objects, which represent the routers defined in that subsystem.

For example, you could set up a network to control a building with 3 floors. You could
define 3 subsystems within the network, so that you could logically group the devices and
routers on each floor separately. You could also set up additional subsystems
representing different rooms on each floor of the building, as your network design
requires.

LNS Programmer's Guide 33

Because subsystems are logical divisions of a network, and devices can belong to multiple
logical divisions, you can create multiple subsystems that cross-reference a network for
different purposes with your application, and add individual devices to each one. In this
manner, devices could appear in multiple subsystems. For example, you could create one
subsystem to represent the physical layout of your network, and another to represent the
functional layout, separating the HVAC, lighting and security systems in this way.

Each of the object types defined in the LNS Object Server includes its own set of
properties and methods. Properties contain information defining the current
configuration and operational behavior of an object. Methods provide a mechanism to
perform various operations on each object. The LNS Object Server also defines a set of
events that you can use to keep your application informed when the configurations of
certain objects are modified, or when certain operations are performed.

The LNS Object Server supports all valid COM data types. In addition, the LNS Object
Server contains a series of defined exceptions, which are error messages that will be
generated if you write invalid data to any of the properties or objects defined in the LNS
Object Server, or if an operation caused by the invocation of a method fails for any
reason.

The complete LNS Object Server Hierarchy is displayed below. The various objects
included in this diagram are described in this manual, and in the LNS Object Server
Reference help file.

NOTE: You can use the LNS Object Browser to browse the contents of the LNS Object
Hierarchy when developing your application. The LNS Object Browser application offers
point-and-click access to almost every object, method, and property in the LNS Network
Operating System. This makes the Object Browser the ideal tool to investigate an
existing LNS-based environment during LNS application development, or to explore LNS
for training purposes. It can also be used to manipulate an LNS-based system by
modifying properties and invoking methods. Consult the online help provided with the
LNS Object Browser for more information on the utility.

 LNS Programmer's Guide 34

System

TemplateLibrary

Interface

Channel

NetworkServiceDevice

ComponentApp Extension NetworkInterface

DeviceTemplate

Subnet

Subsystem

Subsystem

AppDevice

ConnectDescTemplateNetworkInterface

AppDevice

ObjectServer

Channel

NetworkInterface

AppDevice

Extension

Extension

NetworkServiceDevice

Subnet

Connections

MessageTag

NetworkVariable

Interface

Alias

KEY: Object Only
Object &
Collection

DeviceTemplate

ComponentApp

Extension

Interface

NetworkVariable

ConfigProperty

MessageTag

ConfigProperty

LonMarkObject

NetworkVariable

LonMarkAlarm

ObjectStatus (2)

Network (3)

Application

Interface

AppDevice (MyVNI)

NvMonitorPoint

NvMonitorOptions (2)

FormatSpec

MsgMonitorOptions (2)

LdrfLanguage

Router

Channel

Subnet

RouterSide (2)

Extension

Subsystem

DetailInfo

Extension

UpgradeStatus

UpgradeInfo

NvMonitorOptions

MsgMonitorOptions

FormatSpec

DataPoint

A parenthetical number next to
an object or collection indicates

that the parent object
references multiple copies of

that object or collection

FormatSpec

DataPoint

Extension

DetailInfo

Subsystem

TestInfo

Error

Extension

RecoveryStatus

ComponentApp

PingIntervals

ServiceStatus

ConfigProperty

Account

CreditInfo

FileTransfer

MsgMonitorPoint

MonitorSet

DataValue* SourceAddress*

FormatSpec (2)

*The objects marked with the * character are not referenced directly by any other object, but are created by events
and methods. The DataValue and SourceAddress objects are created by network variable and monitor point update
events, respectively. The DatabaseValidationReport, DatabaseValidationErrorSummary, and
DatabaseValidationErrorInstance objects are created when you call the Validate() method.

NetworkResources

FormatLocale

TestInfo

TypeSpec

DatabaseValidationReport*

DatabaseValidationErrorSummary*

DatabaseValidationErrorInstance*

MonitorSet

DataPoint

DataPoint

Figure 3.3 LNS Object Server Hierarchy

LNS Programmer's Guide 35

Network Service Devices
You will notice in Figure 3.3 that each Network object includes a collection of
NetworkServiceDevice objects. Each NetworkServiceDevice object represents a
LONWORKS device implemented by LNS for use with that particular network.

Each LNS application uses a Network Service Device to communicate with the
application devices and routers on a LONWORKS network when installing, connecting,
managing, and monitoring and controlling the network. Each Network Service Device
contains an LNS network interface. Note that the PC running the LNS Server and
containing the LNS network database is included in the NetworkServiceDevices
collection. The Network Service Device for the LNS Server PC sends all network
management commands required when any application connected to a network installs,
configures and maintains the devices on that network. This is handled transparently by
LNS.

As noted earlier in this chapter, LNS applications can run on the LNS Server PC, or on a
remote PC. Depending on the way a remote application connects to the LNS Server, the
client might use the same Network Service Device as the LNS Server PC within a
network, or it may use its own Network Service Device. For more information on this,
and for an overview the various client types you can use with LNS, and how each one
connects to the LNS Server, see LNS Clients on page 37.

Separate Network Service Devices are defined for each network, even if they are both
associated with the same application. For example, if a single application has two
networks open, each network will contain a separate NetworkServiceDevice object
representing the application’s Network Service Device on that network. All LNS
applications running on the LNS Server PC will use the same NetworkServiceDevice
object within each separate network. Each Network Service Device has its own LonTalk
address, and may have network variables and monitor sets defined on it to support
monitoring and control operations.

Network Interfaces
Each Network Service Device uses a network interface. A network interface (also called a
network services interface, or NSI) is the device that connects the Network Service
Device to the LONWORKS network. LNS network interfaces also provide the physical
connection to the network and the messaging connection to the LNS Server. They route
service requests to the LNS Server and other LNS network interfaces (if multiple
Network Service Devices are connected to the network) and coordinate with the LNS
Server to manage transactions.

For more information on network interfaces, and for a list of the various network
interface devices that are commonly used with LNS, see Chapter 11, LNS Network
Interface Devices.

LNS Network Services
The primary purpose of the LNS network operating system is to simplify the
performance of network services. Network services are operations that fall into the
following three major categories:

• Network installation and configuration

 LNS Programmer's Guide 36

• Network maintenance and repair

• System monitoring and control

The first two categories are collectively called network management. The third category
is called monitor and control.

A simple network service typically results in the transmission of multiple LonTalk
messages across the network. When the application requests a service, e.g. to connect a
set of network variables, the LNS Object Server translates the request into LNS service
calls which are then expanded into the required network actions — allocating network
resources; building, sending, and processing network messages; performing error
checking and recovery. The result of the request is routed back to the LNS Object Server,
which notifies the application if an error has occurred.

By selecting the appropriate object and invoking its methods, an LNS application can
quickly accomplish each network management task with a minimum of overhead. The
LNS Object Server manages the device and network resources for the application, and
sends and processes the required LonTalk messages.

The LNS Object Server automates network-related tasks whenever possible. You can
configure it to automatically discover the presence of newly attached devices on the network.
Where automation is not possible, simplification is provided. For example, the LNS Object
Server provides connection description objects that allow the LNS application to specify all
the attributes of a connection in a single object. As a result, an application can choose a pre-
existing connection description when connecting two devices, instead of manually specifying
each attribute of the connection. By adding application knowledge (for example, the set of
devices that it may encounter and the types of configurations that make sense), an application
can further automate tasks and simplify the user interface.

The LNS Object Server provides these core network services to LNS applications. See the
sections following this for a more detailed overview of network services that can be
applied to network management tasks, and services that can be applied to monitor and
control tasks.

Network Management
LNS provides all the network services you need to install, configure, and manage a
network with your application. This includes the following:

• Device discovery, installation, configuration, removal, replacement,
resetting, testing, and management

• Router installation, configuration, removal, replacement, testing, and
management

• Importing device self-documentation and self-identification information
ad hoc or through external interface files

• Connection and disconnection of network variables and message tags

• LonMark object access

• Receiving service pin messages

• Data formatting based on standard and user-defined resource files

• Addition and removal of network variables, message tags and LonMark
Functional Blocks on host-based devices that support dynamic interface
components.

LNS Programmer's Guide 37

• Copying of configuration property values from one device to another

• Querying and setting of device properties, such as locations, priority slots,
self documentation, and network variable attributes

• Generation of network configuration change events

• Subnet and channel creation

• Modification of network variable types of unbound network variables

• Creating connections between devices

• Database recovery from the network

Monitor and Control
Monitoring is the process of fetching data from devices on the network, and control is the
process of writing data to network devices. Both involve subordinate tasks such as data
formatting and address change tracking (to ensure that data is not lost due to address
changes). In a LONWORKS network, data may be retrieved from application devices using
bound connections, polling messages at regular intervals, or explicit one-time polls.
Formatting is accomplished automatically by processing network variable types
according to predefined formatting files. Additional formatting or processing may also be
performed by the LNS application.

The first step to take when programming an LNS application is to select a client type and
initialize the LNS Object Server. Following that, you can use any of the network services
provided by LNS to perform the monitor and control (or network management) tasks
listed in these sections. Before doing so, you should review the rest of this chapter, which
describes the various client types you can use with LNS, and provides a roadmap you can
use when reading this document.

LNS Clients
LNS applications are capable of running locally or remotely. Multiple applications, some
running locally and some running remotely, can access a single network simultaneously.
A local application is one that is operating on the same PC as the LNS Server and the
LNS global database.

A remote client application is one that is running on a PC that does not contain the LNS
database or run the LNS Server. Remember that you need to use the LNS Server utility
on the LNS Server PC to enable access to the LNS Server by remote clients. If you are
using an LNS high performance (Layer 2) network interface, an application running on
your client can simultaneously access one or more local networks and one or more remote
networks using a single physical network interface (i.e. access a network database on the
application's PC as well as a network database on another PC).

An application that accesses the LNS Server remotely can do so as a Lightweight Client
or as a Full Client. A Lightweight Client is an application that communicates with the
physical network through the LNS Server PC, via a TCP/IP connection. A Full Client is
as application that has its own network interface, and thus communicates with the LNS
Server PC through the network, as well as directly with devices on the network. A Full
Client is as application that has its own Network Service Device connecting to the
network and to the LNS Server PC. The Network Services Device uses an LNS network
interface, and either a regular LONWORKS channel or a LONWORKS /IP channel, to do so.

 LNS Programmer's Guide 38

A remote Full client communicates with the LNS Server PC through the network, as well
as directly with devices on the network.

Note that some applications, known as Independent Clients, can access a network
without connecting to the LNS Server or to the global database. Independent clients can
only be used for monitor and control operations.

When enabling remote client access with the LNS Server application, the LNS Server
starts listening at TCP port 2540 by default. Any Lightweight client can then access your
LNS Server, if they are aware of your LNS Server's IP address and TCP base port
numbers. If you wish to completely disable access by Lightweight clients, see the
available options that are detailed in the help file for the LNS Server application. If you
wish to restrict access by remote LNS applications to specific IP addresses or IP address
ranges, use the PermissionString property. For more information on the use the
PermissionString property, see the LNS Object Server Reference help file.

The following sections detail the various ways local and remote applications
communicate with the LNS Server and the LONWORKS network.

Local Client Applications
Local Client applications run on the LNS Server PC – the same PC that contains the
LNS global database. This is shown in Figure 3.4. In this configuration, the PC running
the application contains an LNS network interface that is used to communicate directly
with the physical network. For descriptions of the network interfaces you can use with
LNS, see Chapter 11, LNS Network Interfaces.

Each network contains a NetworkServiceDevice object that is shared by the LNS
Server PC, and all local applications that have that network open.

LNS Application and LNS Server PC

LONWORKS Channel

LONWORKS
Device

LONWORKS
Device

LONWORKS
Device

LONWORKS
Device

LONWORKS
Device

Figure 3.4 Network Communication as a Local Client

Lightweight Client Applications
Lightweight client applications run on a different PC than the LNS Server and the LNS
database. The remote PC is connected to the LNS Server PC via TCP/IP sockets, as
shown in figure 3.5.

LNS Programmer's Guide 39

LNS Server PC

LONWORKS Channel

LONWORKS
Device

LONWORKS
Device

LONWORKS
Device

LONWORKS
Device

LNS Application PC (Lightweight Client)

Figure 3.5 Network Communication as a Remote Lightweight Client

Remote Lightweight client applications must have regular contact with the LNS Server.
A Lightweight client application will be disconnected from the LNS Server if the TCP/IP
connection is broken. A Lightweight client application cannot perform monitor and
control operations if the connection to the LNS Server is lost, because both the
connection to the LNS Server and the data monitoring and control are through the
TCP/IP connection.

On some PCs, if an established TCP/IP connection is idle for some time, the PC enters a
power-save mode that causes TCP/IP disconnection. The LNS Server treats this as it
would any other disconnection. Once the LNS Server detects the disconnection, the client
application must reestablish its connection to the LNS Server by closing the System and
Network, and then reacquiring and reopening them. Similarly, all other LNS object
references that the LNS application holds in scope must be released and reacquired from
the LNS Server. To avoid going into power save mode unintentionally, disable the power
saver mode on the LNS Server PC and the PC running your Lightweight client
application.

All remote Lightweight client applications use the same NetworkServiceDevice object
that the LNS Server PC uses, and that the local client applications use for a given
network. Therefore, any network variables, connections, and monitor sets defined on that
Network Service Device are available to both Local and Lightweight clients.

Full Client Applications
Full Client applications run on a different PC than the LNS Server and the LNS
database, as shown in Figure 3.6.

 LNS Programmer's Guide 40

LONWORKS Network

LNS Server PC
(Host PC)

LNS Application PC
(Remote PC)

LonWorks
Dev ices

LONWORKS Network

LONWORKS
Device

LONWORKS
Device

LONWORKS
Device

LONWORKS
Device

LONWORKS
Device

Figure 3.6 Network Communication as a Full Client

Each Full client PC contains a network interface it uses to connect to the LONWORKS

channel, and communicate with the LONWORKS network and LNS Server. For
descriptions of the network interfaces you can use with LNS, see Chapter 11, LNS
Network Interfaces.

In the case of a communication problem between the LNS Server and a Full Client
application, the LNS Server will retry the connection for more than a minute before
timing out and determining that the client is disconnected. From the point of view of the
Full Client application, a communication problem that results in disconnection will
appear to be an unusually long LNS service that ultimately returns the LCA:#120
lcaErrNoConnectionToServer exception.

Each remote Full Clients use a NetworkServiceDevice object defined for shared use
by it and all the other remote Full Clients on the same PC connected to the network.
They do not share the Network Service Device used by Local Client applications,
Lightweight Client applications, or the LNS Server PC. Therefore network variables,
connections and monitor sets defined on the Network Service Device used by a remote
Full client application are shared only by other remote Full clients on the same PC that
are connected to the same network.

Independent Clients
If an application does nothing but perform monitor and control services, it does not need
to access the LNS network database, and thus does not need to connect to the LNS
Server. For this reason, LNS provides a server-independent mode. An application running
in server-independent mode is considered an Independent client application.

Independent client applications do not need the LNS Server to be running on the PC
containing the LNS global database, as shown in Figure 3.7. However, only applications
which can directly access the LONWORKS network via an LNS network interface or
LONWORKS/IP channel can operate as Independent client applications. Note that in
Figure 3.7, the LNS Server PC is not attached to the network.

LNS Programmer's Guide 41

 LNS Server PC

LONWORKS Channel

LONWORKS
Device

LONWORKS
Device

LONWORKS
Device

LONWORKS
Device

LONWORKS
Device

LNS Application PC with Network
Interface

X

Figure 3.7 Network Communication As An Independent Client

Independent client applications can monitor and control monitor points that have been
previously created by a Full or Local client application, and automatically receive
network addressing updates from the network. They cannot create monitor sets, or add
monitor points to a monitor set, because Independent client applications cannot access
the LNS database. No objects can be added or removed by an Independent client
application, and most methods and properties unrelated to monitor and control are
unavailable. As noted, Independent client applications can only be used for monitor and
control operations.

For more information on monitor and control, see Chapter 9 of this document.

Getting Started
The first step to take when programming an LNS application is to select a client type and
initialize the LNS Object Server. Following that, you can use the network services
provided by LNS. Before doing so, you should review the rest of this document. For your
convenience, Table 3.1 lists the remaining chapters of this document, and summarizes
their contents.

You should note that the remaining chapters of this document describe LNS methods,
objects and properties as they pertain to each network management or monitor and
control task. In many cases, you can find more extensive details about an object,
property, method or event in the LNS Object Server Reference file. The LNS Object Server
Reference file can be accessed through the main Echelon LNS Application Developer’s Kit
help file via the Echelon LNS Application Developer’s Kit menu in the Windows
Programs group.

 LNS Programmer's Guide 42

Table 3.1 LNS Programmer’s Guide Document Roadmap

Chapter Description

Chapter 4, Programming an
LNS Application

This chapter describes the steps you need to take
when initializing an LNS application, whether you
plan to use that application for network management,
or for monitor and control. This includes all the steps
you need to take to open the LNS Object Server, and
initially access a LONWORKS network.

Separate instructions are provided for each of the
client types introduced in this chapter.

Chapter 5, Network
Management : Installation
Scenarios

This chapter begins the discussion of the network
management operations you can perform with LNS. It
starts with an overview of the three basic installation
scenarios you can use when creating a LONWORKS
network with LNS, and follows with step-by-step
instructions you can follow when performing each
installation scenario. The tasks included in each step
are described in more detail in Chapters 5, 6 and 7 of
this document.

Chapter 6, Network
Management : Defining,
Commissioning, and
Connecting Devices

Chapter 5 introduces the tasks you need to take when
installing and defining a network, and explains when
you should perform each task. Chapter 6 provides
additional details on these tasks. This includes topics
such as installing, configuring, commissioning, and
connecting devices.

Chapter 7, Network
Management : Optimizing
Connection Resources

This chapter contains guidelines you may find useful
when planning connections between devices on large
networks.

Chapter 8, Network
Management : Advanced
Topics

This chapter provides information on advanced topics
that may be of use to you when writing a network
management application. This includes how to
properly manage a Network Service Device, how to
manage a network with multiple channels, and how
you can take advantage of the dynamic device
interface features added to LNS for Turbo Edition.

Chapter 9, Monitor and
Control

This chapter describes how to write applications to
monitor and control the devices on your LONWORKS
network.

Chapter 10, LNS Database
Management

This chapter provides information about how you
should manage your LNS databases, and describes
the LNS features you can use to do so. This includes a
description of the LNS database validation and online
database backup features that have been added to
LNS for Turbo Edition, how to move LNS databases,
and how to perform a network database recovery with
LNS.

LNS Programmer's Guide 43

Chapter Description

Chapter 11, LNS Network
Interface Devices

This chapter describes the various network interfaces
you can use with LNS.

Chapter 12, Director
Applications and Plug-Ins

This chapter discusses the standards and
development methodology for creating interoperable
LNS director and plug-in applications.

Chapter 13, LNS Licensing This chapter describes the LNS licensing model. This
will be of interest to developers writing a network
management application, as you will need to consider
some licensing issues when installing and
commissioning the devices on your network.

Chapter 14, Distributing
LNS Applications

This chapter describes how you can redistribute your
LNS applications, including how to use the LNS
Redistributable Maker utility and how to install your
LNS application.

Chapter 15, Advanced
Topics

This chapter describes advanced topics you may find
useful when using LNS. This includes subjects like
file transfer, developing remote and portable tools,
multi-threading, avoiding memory leaks, and writing
interoperable LNS applications.

Appendix A, Deprecated
Methods and Obsolete Files

This appendix will be of interest mainly to those who
are upgrading to LNS Turbo Edition from a previous
version of LNS. It may also be of interest if you are
developing a plug-in application that must work with
older versions of LNS. It lists LNS methods,
properties and objects that you should avoid using
with Turbo Edition. It also lists files installed with
previous versions of LNS that are no longer installed
or used.

Appendix B, LNS, MFC and
ATL

This appendix provides additional information you
will need when developing an LNS application with
MFC and ATL.

Appendix C, LNS Turbo
Edition Example
Application Suite

This appendix summarizes the example applications
included with the LNS Turbo Edition software.

 LNS Programmer's Guide 44

LNS Programmer's Guide 45

Chapter 4 - Programming an

LNS Application

This chapter describes the steps you will need to follow when
initializing an LNS application, whether it is an application
for network management, or for monitor and control. The
tasks described in this chapter include how to initialize the
LNS Object Server, how to open a network, and how to
terminate an LNS application.

 LNS Programmer's Guide 46

Programming an LNS Application
This chapter describes the tasks you need to follow when initializing an LNS application.
This includes the following steps:

1. Import the LNS ActiveX Control into your development environment. For
more information on this, see the next section, Importing the LNS
ActiveX Control.

2. Initialize the LNS Object Server, and open the network you plan to use.
For more information on these tasks, see Initializing an LNS Application
on page 48.

3. Open the system and set the system parameters. For more information
on these tasks, see Opening a System on page 60.

4. Once you have completed the tasks described in steps 1-3, you can use the
network management and monitor and control services provided by LNS.
Chapters 5, 6, 7 and 8 of this document describe the network
management tasks you can perform with LNS. Chapter 9 describes the
monitor and control services you can take advantage of.

Before moving to these chapters, you should note that this chapter
contains information on other LNS features that may be vital to any LNS
application. This includes guidelines on how to use transactions and
sessions within an LNS application, how to handle errors, guidelines on
handling events within an LNS application, and instructions to follow
when terminating your LNS application.

Importing the LNS ActiveX Control
To begin developing your LNS application, you first need to import the LNS Object
Server ActiveX Control into your development environment, and add a reference to the
control to your project. This will allow you to access the objects, methods and properties
included in the LNS object hierarchy with your application.

Importing the Control into Visual Basic 6.0
The Visual Basic environment is especially suited for rapid application development.
Before you use the LNS Object Server, you must add the LNS Object Server ActiveX
Control to the Visual Basic tool palette using the Custom Controls menu item. To do
so, follow these steps:

1. Open Visual Basic.

2. From the Project menu, select the Components... command.

3. In the list box scroll down to the LNS Object Server ActiveX Control 3.20
box. Click on the box to the left so that an X appears.

4. Click the OK button to close the Custom Controls dialog box. The Object
Server control should now appear in the Visual Basic Tool Palette.

LNS Programmer's Guide 47

Once the tool is part of the Visual Basic tool palette, you can add the LNS Object Server
to an application by selecting the tool and dragging it onto one of the application’s forms.
To do so, follow these steps:

1. Select the LNS Object Server icon on the Visual Basic tool palette.

2. Drag the Object Server control onto one of your application’s forms. By
default, the name of the control will be [formName].LcaObjectServer1,
where [formName] is the name of the form where you placed the control.

3. Optionally, change the name of the Object Server control by setting the Name
property for the control.

Importing the Control into Visual C++
To import the LNS Object Server control into Visual C++ and Visual C++ .NET, make
sure that the LNS Application Developer’s Kit is installed on your development PC, and
then add the following statement to a global header file for your project, such as
StdAfx.h:

“#import "lcaobjsv.ocx" named_guids rename_namespace("lca")”

This statement will direct the preprocessor to locate the LNS type library, and create
header files containing wrappers that expose the available interfaces. Once the wrappers
are created, the #import statement will also serve as an include statement for the
wrapper header files. For more information on this, see Appendix B, LNS, MFC and
ATL.

For Visual C++ .NET, adding the #import statement shown above is the only step you
need to take to import the LNS Object Server control. If you are using Visual C++ 6.0
and want to use the MFC Class Wizard for event handlers, perform these steps as well:

1. From the Project menu, select the Add to Project command. Then, select
the Components and Controls Item in the sub-menu. This activates the
Component and Controls Gallery.

2. Open the Registered ActiveX Controls folder.

3. Select the LONWORKS ObjectServer control icon, and click Insert.

4. A confirmation dialog appears with the name of the wrapper class to be
created for the Object Server.

5. Click the OK button to finish adding the control. The LNS Object Server
control now appears as a tool icon in the resource editor’s control toolbar.

6. Click the Close button to close the component gallery dialog.

Once the control is part of the resource editor’s toolbox, you can add the control to an
application by dragging the control from the toolbox onto a dialog resource, and then
using the MFC Class Wizard to create the member variable for the control and its LNS
Object class definitions. When creating a Visual C++ application, Echelon recommends
that you do not reduce the default Visual C++ stack size.

To create an instance of the Object Server control in a Visual C++ application, follow
these steps:

1. Select the LNS Object Server icon on the resource editor toolbox.

 LNS Programmer's Guide 48

2. Drag the Object Server control onto one of your application’s dialogs.

3. Change the control’s resource ID, as necessary, by right clicking on the
newly added control and selecting Properties. This opens a dialog box
containing the current resource ID and other properties of the control.

4. From the View menu, select Class Wizard. This opens the Visual C++
Class Wizard.

5. Select the Member Variables tab.

6. Select the Object Server’s control ID (defined in step 3) from the list of
control IDs, and click the Add Variable button.

7. Enter the variable name, verify that the Category box contains the value
"Control", then click OK. The member variable is then created within the
class for the dialog containing the control.

Initializing an LNS Application
After you have imported the LNS Object Server Active X control, you can begin using
LNS services to perform network management or monitor and control operations. You
first need to perform some initialization tasks.

The first initialization task is to configure and open the LNS Object Server. To do so,
your must select the network access mode and licensing mode for your application. Then,
your application can open the Object Server and begin accessing your LONWORKS
networks.

The steps you need to follow vary for Local, Full, Lightweight and Independent client
applications. The following sections describe the steps you need to take for each client
type. For a description of each client type, and reasons why you might want to use each
client type, see LNS Clients on page 37.

Initializing a Local Client Application
This section describes how to initialize a Local client application. This includes the
following steps:

1. Selecting the Local Access Mode

2. Specifying the License Mode

3. Opening the Object Server

4. Selecting a Network Interface

5. Opening a Network

Table 4.1 includes sample code that you could use when performing each of these tasks.
See the sections following Table 4.1 for more information on each task.

LNS Programmer's Guide 49

Table 4.1 Initializing a Local Client Application

Task Sample Code For More
Information,

See…

Selecting
the Local
Access
Mode

ObjectServer.RemoteFlag = False Selecting the Access
Mode on page 49

Specifying
the
License
Mode

ObjectServer.SetCustomerInfo(CustomerID,CustomerKey) Specifying the
Licensing Mode on
page 49

Opening
the Object
Server

ObjectServer.Open() Opening the Object
Server on page 50

Selecting
a Network
Interface

Dim NICollection as LcaNetworkInterfaces
Dim SelectedNI as LcaNetworkInterface

Set NICollection = ObjectServer.NetworkInterfaces
Set SelectedNI = NICollection.Item("LON1")

Selecting a
Network Interface
on page 50

Opening a
Network

Dim MyNetworks as LcaNetworks
Dim MyNetwork as LcaNetwork

Set NetworksCollection = ObjectServer.Networks
Set MyNetwork=NetworksCollection.Item("Building 76")
MyNetwork.Open()

Opening a Network
on page 51

Selecting the Access Mode
Each application must have some way of determining whether it will run as a remote or
local client. Sometimes, the access mode is user-determined, meaning that a user selects
a remote or local option as part of your application's start-up process. In other cases, you
might design your applications specifically for one form of operation.

To specify the LNS application access mode as local, set the ObjectServer object's
RemoteFlag property to False, as shown below:

ObjectServer.RemoteFlag = False

Specifying the Licensing Mode
The last step you should take before opening the LNS Object Server is to set the licensing
mode. The licensing mode determines how the LNS Object Server will track the addition
of devices to a network by your application. You can set the licensing mode to either
Demonstration Mode, or Standard Mode. Demonstration Mode is used by default, but you
must use the Standard Mode once your application begins normal operation.

To enable the Standard Mode, set your customer identification information by calling
the SetCustomerInfo() method on the ObjectServer, as shown below:

ObjectServer.SetCustomerInfo(CustomerID, CustomerKey)

 LNS Programmer's Guide 50

The CustomerID and CustomerKey parameter supplied to the function refer to the
customer identification and key numbers that are printed on the back cover of the LNS
Application Developer’s Kit CD-ROM jewel case. For more information on LNS licensing,
and for more details on the differences between Standard Mode and Demonstration
Mode, see Chapter 13, LNS Licensing.

Opening the Object Server
Once you have set the network access mode and licensing mode, you can open the Object
Server, as shown below:
ObjectServer.Open()

This opens the LNS global database. An application can determine or change the location
of the global database, which is stored in the Windows System Registry, by accessing the
ObjectServer object’s DatabasePath property. If the value of this property is
changed, the Windows Registry will be updated automatically. By default, the path
value is set to the following by the LNS software setup program:
[Windows Drive]\LONWORKS\ObjectServer\Globaldb

Note that interoperable LNS applications should not modify the global database path,
since all LNS applications running on the PC must share the global database, and
changing the path may cause other applications to be unable to access the global
database.

NOTE: If you will be opening any networks with an LNS application that is running as a
Windows service, then the first application to open the LNS Object Server must also be
running as a Windows service. In addition, if a network is to be opened by an LNS
application that is running as Windows service, then that network and system must be
opened by an LNS application that is running as Windows service before it is opened
with an LNS application running as a user process. For more information on this, consult
the help pages for the Open() methods of the Network and ObjectServer objects in
the LNS Object Server Reference help file.

Selecting a Network Interface
When operating locally, an LNS application may run while physically attached to a
network, or while detached from the network. To run attached, the LNS application must
select the network interface it will use to communicate with the network. To run
detached, the LNS application must explicitly de-select the previously selected network
interface.

Note that before you use a network interface, you may need to configure the network
interface with the LONWORKS Interfaces application in the Windows control panel. For
more information on this, and for general information on the various network interfaces
you can use with LNS, see Chapter 11, LNS Network Interfaces.

The engineered mode installation scenario described in Chapter 5 of this document splits
the process of installing LONWORKS devices on a network into two stages — a definition
stage and a commissioning stage. During the definition stage, a network interface is not
required. So, when using the engineered mode installation scenario, your application
does not need to specify a network interface. This is referred to as engineered mode. If the
network interface has never been assigned, the system will start in engineered mode. If a
network interface has been previously assigned, the application must explicitly deselect
that network interface to start in engineered mode (by setting the NetworkInterface

LNS Programmer's Guide 51

property to NOTHING for Visual Basic, or NULL for Visual C++). This is described in more
detail in Chapter 5.

If multiple client applications have the same network open, they must either use the
same network interface, or they must all be in engineered mode. If an LNS application
opens a network without explicitly selecting a network interface, the network will be
opened using the same network interface that was used the last time the network was
opened, or it will be opened in engineered mode if the network was last opened in
engineered mode. Newly created networks will be opened in engineered mode if the
network interface is not explicitly specified.

To select a network interface for local operation, follow these steps:

1. Fetch the ObjectServer object’s NetworkInterfaces collection. All
network interfaces registered in the Windows System Registry on the PC
running your application are automatically detected by the LNS Object
Server and included in this collection.

Dim NICollection as LcaNetworkInterfaces
Set NICollection = ObjectServer.NetworkInterfaces

2. Select the desired network interface. The following code selects a network
interface named "LON1" which will be used to open the system.

Dim SelectedNI as LcaNetworkInterface
Set SelectedNI = NICollection.Item("LON1")

Opening a Network
Once you have opened the Object Server, you can begin using your Local client
application to access LONWORKS networks. This section describes how to open an existing
network, and how to create a new network. To open a network, or to create a new
network, follow these steps:

1. Retrieve the Networks collection from the ObjectServer object’s
Networks property. The Networks collection contains all local networks.
For Local client applications, the Object Server retrieves the Networks
collection from the LNS global database.

Dim MyNetworks as LcaNetworks
Set MyNetworks = ObjectServer.Networks

2. To create a new network, call the Add() method on the Networks
collection. Networks can only be created when running locally. The
following code creates a network named "Building 75" with database path
"c:\bldg75". The final parameter supplied to the Add() method forces the
creation of a new network database in the specified database path if set
to True, and imports an existing database from the specified database
path if set to False.
Dim MyNetwork as LcaNetwork
Set MyNetwork = MyNetworks.Add("Building75","c:\bldg75",True)

To fetch an existing network from the collection, obtain the desired
Network object from the Networks collection. You can iterate through
the Networks collection to list all available networks, or you can use the
Item property to open a specific network by its name or by its index

 LNS Programmer's Guide 52

within the Networks collection. The name to use is specified by the
Network object’s Name property. The following code fetches an existing
network called “Building76” from the global database.

Dim MyNetwork as LcaNetwork
Set MyNetwork = MyNetworks.Item("Building 76")

3. Call the Open() method on the Network retrieved in step 2 to open its
LNS network database.

MyNetwork.Open()

4. Optionally repeat steps 2 and 3 to open more networks. Once you have
opened a network, you should follow the tasks described in the Opening a
System section later in this chapter to configure and open the system.

Initializing a Remote Full Client Application
This section describes how to initialize a Full client application. This includes the
following steps:

1. Selecting the Remote Access Mode

2. Specifying the License Mode

3. Opening the Object Server

4. Selecting a Network Interface

5. Opening a Network

Table 4.2 includes sample code that you could use to incorporate each of these tasks. See
the sections following Table 4.2 for more information on each task.

Table 4.2 Initializing a Full Client Application

Task Sample Code For More
Information,

See..

Selecting
the Access
Mode

ObjectServer.RemoteFlag = True
ObjectServer.Flags = lcaFlagsUseNSI

Selecting the
Access Mode
on page 53

Specifying
the
License
Mode

ObjectServer.SetCustomerInfo(CustomerID,CustomerKey) Specifying the
License Mode
on page 53

Opening
the Object
Server

ObjectServer.Open() Opening the
Object Server
on page 53

Selecting
a Network
Interface

Dim NICollection as LcaNetworkInterfaces
Dim SelectedNI as LcaNetworkInterface

Set NICollection = ObjectServer.NetworkInterfaces
Set SelectedNI = NICollection.Item("LON1")
Set ObjectServer.ActiveRemoteNI = SelectedNI

Selecting a
Network
Interface on
page 54

LNS Programmer's Guide 53

Task Sample Code For More
Information,

See..

Opening a
Network

Dim MyNetworks as LcaNetworks
Dim MyNetwork as LcaNetwork

ObjectServer.RemoteFlag = True
Set MyNetworks = ObjectServer.Networks
Set MyNetwork=NetworksCollection.Item("Building 75")
MyNetwork.Open()

Opening a
Network on
page 55

Selecting the Access Mode
As described in Selecting the Access Mode on page 49, each application must have some
means of determining whether it will run as a remote or local client. To specify the access
mode for a Full client, follow these steps:

1. If the PC running your application has not previously opened the network
you plan to use, or if the Network Service Device your application is using
is on a different channel than it was last time the network was opened,
select remote operation by setting the ObjectServer object's
RemoteFlag property to True.

ObjectServer.RemoteFlag = True

2. Set the ObjectServer object's Flags property to lcaFlagsUseNSI.
This indicates that the Full client application will use a network interface
to access the LNS Server:

ObjectServer.Flags = lcaFlagsUseNSI

NOTE: The lcaFlagsUseNSI and lcaFlagsUseTCP flags are
mutually exclusive.

NOTE: The first time you open a network with a remote Full client application, the LNS
Object Server will need to query the network to determine what remote networks are
currently opened in all connected LNS Servers. This may take a long time, since the LNS
Object Server must search the network for all accessible servers. After the first time you
have opened a network, you can generally bypass this process by changing the way you
initialize your Full client application. For instructions on this, see Opening a Network on
page 55.

Specifying the License Mode
The last step you should take before opening the LNS Object Server is to set the licensing
mode. The licensing mode determines how the LNS Object Server will track the addition
of devices to a network by your application. You can set the licensing mode to either
Demonstration Mode, or Standard Mode. Demonstration Mode is used by default, but you
must use the Standard Mode once your application begins normal operation.

To enable the Standard Mode, set your customer identification information by calling
the SetCustomerInfo() method on the ObjectServer, as shown below:

ObjectServer.SetCustomerInfo(CustomerID, CustomerKey)

The CustomerID and CustomerKey parameter supplied to the function refer to the
customer identification and key numbers that are printed on the back cover of the LNS

 LNS Programmer's Guide 54

Application Developer’s Kit CD-ROM jewel case. For more information on LNS licensing,
and for more details on the differences between Standard Mode and Demonstration
Mode, see Chapter 13, LNS Licensing.

Opening the Object Server
Once you have set the network access and license modes, you can open the Object Server,
as shown below:
ObjectServer.Open()

NOTE: If you will be opening any networks with an LNS application that is running as a
Windows service, then the first application to open the LNS Object Server must also be
running as a Windows service. In addition, if a network is to be opened by an LNS
application that is running as Windows service, then that network and system must be
opened by an LNS application that is running as Windows service before it is opened
with an LNS application running as a user process. For more information on this, consult
the help pages for the Open() methods of the Network and ObjectServer objects in
the LNS Object Server Reference help file.

Selecting a Network Interface
Local clients can access a record of the possible networks and servers from the LNS
global database. In contrast, each Full client application must register with the LNS
Server in order to interact with a network. Each Full client does so by querying the
LONWORKS network it’s attached to for available servers.

Each Full client applications must specify its network interface prior to having access to
the available servers and networks. You can do so by following these steps:

1. Fetch the NetworkInterfaces collection from the ObjectServer
object. All network interfaces registered in the Windows System Registry
on your application PC are automatically read by the Object Server, and
are included in this collection.

Dim NICollection as LcaNetworkInterfaces
Set NICollection = ObjectServer.NetworkInterfaces

2. Select the desired network interface. Remember that the
NetworkInterfaces collection contains all registered network
interfaces, including those that are not suitable for use with LNS.

NOTE: In LNS 3.0 and all subsequent releases, if multiple Full Client
applications on the same PC attempt to open the same network, they
must use the same network interface. Consider a case where you have
two PCLTA-20 network interface cards called LON1 and LON2 on a PC
that is running several Full client applications. If an application on that
PC opens a network using LON1, and then another application on the PC
attempts to open the same network using LON2, the second application
will receive the NS#149 lcaErrNsConflictWithCurrentNetwork
exception when it attempts to open the network. However, the second
application will be able to successfully open the network using LON1.

The following code selects a network interface named "LON1.”

LNS Programmer's Guide 55

Dim SelectedNI as LcaNetworkInterface
Set SelectedNI = NICollection.Item("LON1")

3. Set the remote network interface for the LNS application to the network
interface selected in step 2.

ObjectServer.ActiveRemoteNI = SelectedNI

Note that before you use a network interface, you may need to
configure the network interface with the LONWORKS Interfaces
application in the Windows control panel. For more information on
this, and for general information on the various network interfaces
you can use with LNS, see Chapter 11, LNS Network Interfaces.

Opening a Network
This section describes how to connect to a network with a Full client application. You
cannot create new networks with Full client applications. The LNS Server utility must
be running on the PC containing the LNS databases (i.e. the LNS Server PC) to open a
network as a Full client.

The steps required to open a network with a remote Full client application vary,
depending on whether a remote Full client application using your Network Service
Device has opened the network before. If a remote Full client application has not
previously accessed the network to be opened with your Network Service Device, follow
these steps:

1. Get the ObjectServer object's Networks collection. The LNS Object
Server will need to query the network to determine what remote
networks are currently opened in all connected LNS Servers. This may
take a few moments, since the LNS Object Server must search for all
accessible servers.

Dim MyNetworks as LcaNetworks
Set MyNetworks = ObjectServer.Networks

2. Get the network to be opened. You need to specify the network to be
opened by the Network object’s Name property, which was specified when
the network was created, or by using the object’s numerical index within
the Networks collection.

Dim MyNetwork as LcaNetwork
Set MyNetwork = MyNetworks.Item(“Building 75”)

3. Call the Network object’s Open() method to open its LNS network
database. The LNS Server must be running on the PC containing the
LNS network database, or the operation will fail.

MyNetwork.Open()

4. Optionally repeat steps 2 and 3 to open more networks. Note that a
remote Full client application can access multiple networks
simultaneously, but must use the same network interface to open each
one.

Once you have opened a network, you should follow the tasks described in
the Opening a System section later in this chapter to configure and open

 LNS Programmer's Guide 56

the system.

If a remote Full client application using your Network Service Device has accessed the
network before, and the LcaNsdType property of the Network Service Device is set to
lcaNsdTypePermanent, you can use the RemoteNetworks collection to access the
network. This allows you to skip the time consuming process of querying the network for
available servers. The RemoteNetworks collection contains all the networks that have
previously been opened by Full client applications running on your PC.

When using the RemoteNetworks collection, the Flags property should not be set to
lcaFlagsUseNSI, and your application should not specify a network interface, as
described earlier in this section. When a network is opened via the RemoteNetworks
collection, LNS will use the last network interface used to open the network. If you want
to use a different network interface to open a network with a remote Full client
application, you need to access the network through the Networks collection, as
described previously.

To open a network via the RemoteNetworks collection, follow these steps:

1. Before opening the Object Server, make sure that the Flags property is
not set to lcaFlagsUseNSI, and that your application has not specified
a remote network interface. In addition, set the RemoteFlag property to
False.

ObjectServer.ActiveRemoteNI = nothing
ObjectServer.RemoteFlag = False
ObjectServer.Flags = ObjectServer.Flags And Not _
 (lcaFlagsUseNSI Or lcaFlagsUseTCP)

2. Access the RemoteNetworks collection.

Dim MyNetworks as LcaNetworks
Set MyNetworks = ObjectServer.RemoteNetworks

You should be aware that changes made on the LNS Server PC can result
in inconsistencies between the LNS Server and the RemoteNetworks
collection. This includes changing the local network interface (if this
results in a new Neuron ID on the LNS Server PC), or removing the
Network Service Device for a Full client. These changes may prevent
your remote Full client application from successfully using an entry in
the RemoteNetworks collection. In addition, if the LcaNsdType of the
client application’s Network Service Device is set to
lcaNsdTypeTransient or (in some cases) lcaNsdTypeStandard, the
Network Service Device will be removed when the client application
closes, and will not exist in the RemoteNetworks collection. Finally, if
your application’s Network Service Device, or if the Network Service
Device used by the LNS Server has changed channels, it may not be
possible to successfully use an entry in the RemoteNetworks collection.
In any of these cases, your client application should resort to using the
Networks collection. Once opened, the entry for the network in the
RemoteNetworks collection will be repaired.

3. Get the network to be opened. In this case, you need to specify the
network to be opened by the Network object’s RemoteNetworkName
property. The default value for the RemoteNetworkName property is

LNS Programmer's Guide 57

r_<Network Name>, where <NetworkName> represents the value
assigned to the Network object’s Name property. For example, if the Name
property is set to HVAC, the name in the RemoteNetworks collections
will be r_HVAC.

Dim MyNetwork as LcaNetwork
Set MyNetwork = NetworksCollection.Item("r_Building 75")

4. Call the Network object’s Open() method to open its LNS network
database. The LNS Server utility must be running on the PC containing
the LNS network database, or the operation will fail.

MyNetwork.Open()

5. Once you have opened a network, you should follow the tasks described in
the Opening a System section later in this chapter to configure and open
the system.

Initializing a Remote Lightweight Client Application
This section describes how to initialize a Lightweight client application. This includes the
following steps:

1. Selecting the Remote Access Mode

2. Specifying the License Mode

3. Opening the Object Server

4. Opening a Network

Table 4.3 includes sample code that you could use to incorporate each of these tasks. See
the sections following Table 4.3 for more information on each task.

Table 4.3 Initializing a Lightweight Client Application

Task Sample Code For More
Information,

See..

Selecting
the
Remote
Access
Mode

ObjectServer.RemoteFlag = True
ObjectServer.Flags = lcaFlagsUseTCP

Selecting the
Remote Access
Mode on page
58

Specifying
the
License
Mode

ObjectServer.SetCustomerInfo(CustomerID,CustomerKey) Specifying the
License Mode
on page 58

Opening
the Object
Server

ObjectServer.Open() Opening the
Object Server
on page 58

 LNS Programmer's Guide 58

Task Sample Code For More
Information,

See..

Opening a
Network

Dim Networks as LcaNetworks
Dim MyNetwork as LcaNetwork

Set MyNetworks = ObjectServer.Networks
Set MyNetwork=MyNetworks.Item("Building 75")
MyNetwork.Open()

Opening a
Network on
page 59

Selecting the Remote Access Mode
As described in Selecting the Access Mode on page 49, each application must have some
means of determining whether it will run as a remote or local client. To specify the access
mode for a Lightweight client, follow these steps:

1. Set the ObjectServer object's Flags property to lcaFlagsUseTCP.
This sets the network transport mode, and indicates that the Lightweight
client will access the LNS Server via a TCP/IP connection:

ObjectServer.Flags = lcaFlagsUseTCP

NOTE: The lcaFlagsUseNSI and lcaFlagsUseTCP flags are
mutually exclusive.

2. Select remote operation by setting the ObjectServer object's
RemoteFlag property to True. This will cause the Networks collection to
contain all remote networks have been entered into the Windows
Registry on the PC running your application after the Object Server has
been opened:

ObjectServer.RemoteFlag = True

Specifying the License Mode
The last step you should take before opening the LNS Object Server is to set the licensing
mode. The licensing mode determines how the LNS Object Server will track the addition
of devices to a network by your application. Remote Lightweight client applications must
always operate in Standard Mode. To enable the Standard Mode, set your customer
identification information by calling the SetCustomerInfo() method on the
ObjectServer, as shown below:

ObjectServer.SetCustomerInfo(CustomerID, CustomerKey)

The CustomerID and CustomerKey parameter supplied to the function refer to the
customer identification and key numbers that are printed on the back cover of the LNS
Application Developer’s Kit CD-ROM jewel case. For more information on LNS licensing,
and for more details on the differences between Standard Mode and Demonstration
Mode, see Chapter 13, LNS Licensing.

Opening the Object Server
Once you have set the network access mode, and licensing mode for your Lightweight
client application, you can open the Object Server, as shown below:

LNS Programmer's Guide 59

ObjectServer.Open()

NOTE: If you will be opening any networks with an LNS application that is running as a
Windows service, then the first application to open the LNS Object Server must also be
running as a Windows service. In addition, if a network is to be opened by an LNS
application that is running as Windows service, then that network and system must be
opened by an LNS application that is running as Windows service before it is opened
with an LNS application running as a user process. For more information on this, consult
the help pages for the Open() methods of the Network and ObjectServer objects in
the LNS Object Server Reference help file.

Opening a Network
This section describes how to connect to a network with a Lightweight client application.
Lightweight client applications cannot create new networks. The LNS Server utility
must be running on the PC containing the LNS databases (i.e. the LNS Server PC) to
open a network with a Lightweight client application. To connect to an existing network
with a Lightweight client application, follow these steps:

1. Retrieve the Networks collection from the ObjectServer object’s
Networks property. The Networks collection will contain all Lightweight
client networks that have been entered into the Windows Registry on the
PC running your application (i.e. all the networks that have previously
been opened on your PC).

Dim MyNetworks as LcaNetworks
Set MyNetworks = ObjectServer.Networks

2. If this is the first time the network will be opened on the PC running your
application, use the Networks collection object's Add() method to save
the network's name, IP address, and port (identified by the database
path) into the Windows Registry on the remote PC. In this case, the final
createDatabase parameter you supply to the Add method must be set
to True.

Dim MyNetwork as LcaNetwork
Set MyNetwork = MyNetworks.Add("Building 75", _
 "lns://bldgServer.acme.com:2540", True)

Note that the database path supplied to the Add() method contains a
URL containing the LNS Lightweight client protocol name (“lns://”), the
server’s IP address (“bldgServer.acme.com”, or “10.1.2.3” for a fixed IP
address), and the port on which the LNS Server listens for Lightweight
clients (“:2540”).

If the network to be opened has already been opened on the PC running
your application, get the Network object from the Networks collection.
You can iterate through the Networks collection to list all available
networks, or you can specify the network to be opened by its name.

Dim MyNetwork as LcaNetwork
Set MyNetwork = MyNetworks.Item("Building 75")

3. Call the Network object’s Open() method to open the LNS network
database. The LNS Server utility must be running on the PC containing
the LNS network database, or the operation will fail.

 LNS Programmer's Guide 60

MyNetwork.Open()

4. Once you have opened a network, you should follow the tasks described in
the Opening a System section later in this chapter to configure and open
the system.

Initializing an Independent Client
As described in Chapter 3, you can use Independent client applications to open networks
in server-independent mode. You should note that only networks that have been
previously opened by a Local or Full client application using your application’s Network
Service Device can be opened in server-independent mode. To open a network in server-
independent mode, follow these steps:

1. Set the access and licensing modes for the Independent client application
and open the ObjectServer object as you would with a Local or Full
client application. For more information on these tasks, see Initializing a
Local Client Application on page 48.

Note that when opening a network with an Independent client
application, you cannot select a new network interface, as you can with
other client types. LNS will open the network using the same network
interface as the last Local or Full client application that opened the
network.

2. Select a network from the ObjectServer object's VNINetworks
collection. The VNINetworks collection contains all networks that have
been previously opened by Local or Full client applications with the
Network Service Device your application is using:

Dim IndependentNetworks as LcaNetworks
Dim MyNetwork as LcaNetwork
Set IndependentNetworks = ObjectServer.VNINetworks
Set MyNetwork= IndependentNetworks.Item("Building 75")

3. Call the OpenIndependent() method on the selected network:

MyNetwork.OpenIndependent()

4. Once you have opened a network with an Independent client application,
you can begin performing monitor and control tasks with the application,
as described in Chapter 9, Monitor and Control.

Opening a System
Once you have completed the tasks described in the previous sections and opened a
network or group of networks, you need to open the System object for each of your open
networks, and set the System object’s parameters. If an application is running locally,
this allows your application to attach to the network and make modifications to the
network database. If your application is running remotely, this registers your application
with the LNS Server and attaches it to the network, which allows the application to
make database modifications. Note that you cannot open the system when operating an
Independent client application.

To open the system for Full, Lightweight and Local client applications, follow these steps:

LNS Programmer's Guide 61

1. Get the System object from the active network's Systems collection.
There is only one system per network, so select the first system in the
Systems collection.

Dim MySystems as LcaSystems
Dim MySystem as LcaSystem
Set MySystems = MyNetwork.Systems
Set MySystem = MySystems.Item(1)

2. If you are running a Full or Lightweight client application and
authentication is enabled for this System, set the authentication key.
The authentication key is a 12-character string representing a 12-digit
hexadecimal value.
MySystem.AuthenticationKey = "01FE23DC45BA"

Local client applications do not need to set the authentication key for
client/server communication. However, Full and Lightweight client
applications must, or they will be unable to communicate with the LNS
Server. You can provide additional IP security for Lightweight clients by
setting IP permissions on the LNS Server PC via the System object's
PermissionString property.

3. If the System is being opened for the first time and can share media with
other independently managed systems, configure the system to use
shared media by setting the InstallOptions property to
lcaSharedMedia. The default for this property is private media
(lcaPrivateMedia). The shared media setting is typically required for
systems with power line, RF, or LONWORKS/IP channels.

Setting the InstallOptions property after you have initially
opened a system has no effect. You can only set this property
with a Local client application before opening the system for the
first time. You cannot set this property with a remote client
application.

When the lcaSharedMedia option is specified, the LNS ObjectServer
assigns a unique 6-byte value to the DomainId property that is based on
the Neuron ID of the Network Service Device that the LNS Server is
using. It also disables background discovery by setting the
DiscoveryInterval property to zero, disables background device-
pinging, and disables automatic registration of devices when service pin
messages are received. This is to avoid registering devices from other
systems. For more information on shared media, see Using Shared Media
on page 167.

MySystem.InstallOptions = lcaPrivateMedia

4. If the system is being opened for the first time and you are not using
shared media, set the system’s domain ID. Domain IDs can be 1, 3, or 6
bytes in length and are represented using 2 hexadecimal characters per
byte. If shared media was not selected and no domain ID is specified, the
LNS Object Server will set the domain ID length to 1 byte and the value
to 01. The following code shows a 3-byte domain ID.

MySystem.DomainId = "32A0CF"

 LNS Programmer's Guide 62

NOTE: You can change the domain ID after opening the system. If you
plan on using the engineered mode installation scenario described in
Chapter 5 of this document, you do not need to set the domain ID until
the commissioning stage. This allows a single database to be defined that
is commissioned with many systems, each with a different domain ID.

5. For Full client applications, set the System object’s RemoteChannel
property to the Channel object corresponding to the remote PCs channel.

You do not need to perform this step if you are running a Local or
Lightweight client application, if the system only contains one channel, or
if the system contains multiple channels and only uses configured
routers, bridges or physical repeaters. This step is only necessary for
remote Full client applications attached to multiple channel networks
containing store and forward repeaters.

For those client applications that do require this step, it is important to
note that the Network object’s Channels property is not valid until the
System has been opened. As a result, since the System object’s
RemoteChannel property must be set before the System is opened, you
must pre-open the System to obtain the desired channel, set the
RemoteChannel property, and then re-open the System. This is
demonstrated in the following example:

Dim MyChannels as LcaChannels

’ Pre-open the system:
MySystem.Open()

’ Fetch and assign the desired channel
Set MyChannels = MyNetwork.Channels

’ Set the RemoteChannel property
Set MySystem.RemoteChannel = MyChannels.Item(“C2”)

6. Invoke the System object’s Open() method to open the System (or re-
open the system, if you set the RemoteChannel property in step 5).

MySystem.Open()

Setting System Parameters
System parameters are represented as properties of the System object. You should set
some of these properties before opening the System object, as described in the previous
section. You should set other key properties of the System object after you have opened
it, as follows:

1. MgmtMode Property. This property sets the system management mode,
which determines whether device configuration changes are propagated
to the devices (lcaMgmtModePropagateConfigUpdates) on the
network as they are applied to the LNS database, or saved for later
processing (lcaMgmtModeDeferConfigUpdates). For a new network,
the default setting is lcaMgmtModeDeferConfigUpdates. If you are
opening an existing network, this setting may have been changed by
another LNS application.

LNS Programmer's Guide 63

While the system management mode is set to
lcaMgmtModeDeferConfigUpdates, changes are stored in the LNS
database. They are automatically propagated to the network as soon as
the system management mode is changed back to
lcaMgmtModePropagateConfigUpdates. While the system
management mode is set to lcaMgmtModePropagateConfigUpdates,
all device configuration changes are immediately propagated to the
network.

Note that the system management mode is global, and affects all clients
currently attached to the system. For more information on the system
management mode, see System Management Mode Considerations on
page 97.

MySystem.MgmtMode = lcaMgmtModePropagateConfigUpdates

2. DiscoveryInterval Property. If the shared media option was not
selected when the system was opened, set the discovery interval. The
discovery interval specifies the rate, in seconds, at which the LNS Object
Server will scan the network for unconfigured devices that have been
attached to the network. The default setting for this property is 180 if the
InstallOptions property is set to lcaPrivateMedia, and 0 if the
InstallOptions property is set to lcaSharedMedia. The setting may
have been changed by another LNS application if you are opening an
existing network.

Setting the interval to 0 disables discovery. You should set this property
to 0 unless the control network is expected to be highly dynamic, and
your LNS application is programmed to respond to the automatic
registration of new devices.

Because this property affects all current and future clients accessing this
network, Echelon recommends that you specify an appropriate discovery
interval only when you create the network and open the System for the
first time.

ActiveSystem.DiscoveryInterval = 600

3. UpdateInterval Property. This property determines how often the LNS
Object Server will try to complete operations such as device
commissioning that occurred as a result of a device update failure. A
device update failure occurs when a transaction has been completed and
committed to the LNS database, but LNS is unable to load the
information into the physical device due to some error. The default value
for this property is 120 seconds. Note that you can force the LNS Object
Server to complete such operations at any time by calling the
RetryUpdates() method on the System object. Setting this property to
0 disables automatic retries, and requires explicit calls to the
RetryUpdates() method.

MySystem.UpdateInterval = 240

Because this property affects all current and future clients accessing this
network, Echelon recommends that you specify an appropriate update
interval only when you create the network and open the System the first
time. It is recommended to set this property to 0 only when you require

 LNS Programmer's Guide 64

explicit control of bandwidth usage in low-bandwidth networks.

Steps 1 through 3 list several key properties of the System object that you need to set
when initializing your application, but there are many others you should consider as you
program your application. You should also note that many properties of the System
object are not available until the system has been opened. See the LNS Object Server
Reference help file for a complete list of the properties of the System object, and
descriptions of those properties.

Once you have opened the System object and set its parameters as you desire, you can
begin programming your application to perform monitor and control operations, or to
perform network management tasks. Echelon recommends that you review the rest of
this chapter before proceeding to these tasks.

Using Transactions and Sessions
LNS provides two ways to group sets of database modifications: transactions and
sessions.

Transactions allow a set of database and network modifications to be treated as an
atomic operation. This allows sequences of changes to be canceled on the network and in
the LNS databases if a failure occurs during any part of the sequence. You can also use
transactions to substantially speed up operations if you group multiple changes within a
single transaction. Unless operations must be kept separate or are not allowed within a
transaction, transactions should be used to optimize performance and allow for atomic
roll back of the operation sequence.

Sessions allow certain types of database and network modifications to be grouped and
executed together, without requiring verification that each property write and method
invocation was valid until all operations have completed. This allows your application to
create connections more efficiently, and to avoid failure scenarios that can occur when
devices or routers are moved or changed one step at a time.

Managing Transactions
Transactions can be explicitly managed by an LNS application using the transaction
methods provided by the LNS Object Server, or implicitly managed by the LNS Object
Server. If an application does not explicitly start a transaction, the LNS Object Server
automatically starts one when the LNS application invokes a method that causes a
database modification to two or more objects, and commits the transaction when the
service completes. This is called an implicit transaction.

Implicit transactions are easy to use because they are transparent to the application.
Explicit transactions are useful when you want to group multiple actions into a single
operation. For example, you may want to treat installing a device and connecting that
device to a set of other devices as one indivisible action. Or, you may want exclusive
access to the services you are performing. Only one client can use a transaction at a time.
Thus, if the user cancels part of a transaction prior to completion, the application can
cancel the entire transaction, returning the database to the same condition it was in
prior to the invocation of any of the services. Grouping several related actions as a
transaction improves performance in many cases, since device updates are not sent out
until the transaction is committed. The performance improvements caused by using
explicit transactions can be significant, so use them whenever possible, particularly if

LNS Programmer's Guide 65

you are creating multiple objects of any type or if you are iterating through a collection.
For more information on using transactions with collections, see the Using Transactions
With Collections section later in this chapter.

To explicitly start a transaction, call the System object’s StartTransaction() method.
Once a transaction is started for an application, all network modifications invoked by
that application will be considered part of the transaction. To end the transaction and
save the changes, call the CommitTransaction() method.

To abort the transaction and cause the LNS database to revert to its state prior to the
start of the transaction, the application can use the CancelTransaction() method.
Explicit transactions and some implicit transactions can be canceled while they are in
progress from within the OnSystemNssIdle event handler. For more information on the
OnSystemNssIdle event handler, see Using the OnSystemNssIdleEvent on page 314.

If a transaction is interrupted prior to completion for any reason, the LNS databases and
the network are returned to their states prior to the start of the transaction. If an
application starts a transaction, then it should commit or cancel the transaction within a
reasonable time to avoid hanging other applications. No application can start a new
transaction until the current one is committed or cancelled. While a transaction is in
progress, LNS automatically queues requests to start either additional implicit or explicit
transactions. If an application shuts down while it has an outstanding transaction, and
another application attempts to start a transaction, the LNS Object Server will abort the
abandoned transaction within 30 seconds. Once a transaction is committed or canceled,
other transactions on the system can begin.

This behavior can cause problems when debugging your application. For example, LNS
may cancel a transaction because your application has started a transaction and is
halted in a breakpoint. You can disable this behavior by setting the following Windows
Registry DWORD entry to a non-zero value:

HKEY_LOCAL_MACHINE\SOFTWARE\LonWorks\NSS\Configuration\Transaction
Debugging

Set its value to 0 (zero), or remove the entry, to disable the transaction debugging mode.
You should only modify this Registry entry for debugging purposes, since disabling this
feature may cause all LNS clients to lock up if the value is changed, and an application
running a transaction is improperly terminated.

Monitoring and Transactions
Transactions may be used when working with monitor and control-related methods and
properties, just as with other LNS operations. However, it is important to realize that
some properties used for monitor and control operations are not stored in the LNS
database persistently. As a result, it is not possible for the LNS Object Server to rollback
changes to these properties if a transaction is cancelled.

For more information on monitor and control, see Chapter 9 of this document.

Using Transactions With Collections
In many cases, you will need to iterate through the objects in a collection. LNS provides
several methods and properties you can use to do so for most collections, such as the
Item property and the ItemByHandle() method. The Item property allows you to

 LNS Programmer's Guide 66

retrieve an object by specifying the object’s name or collection index, and the
ItemByHandle() method allows you to retrieve an object by specifying its handle.

Echelon recommends that you use the handle or name assigned to an object to retrieve it
from a collection. The handle may be most desirable, since it is a static, unique value.
However, if you need to iterate through a collection using index numbers to retrieve each
object, you should do so within a transaction. If another client application adds or
removes an object from a collection while your application is iterating through it, you
may encounter invalid or repeated data as LNS adjusts the indices assigned to other
objects in the collection. Exceptions you might encounter in this situation are the
LCA:#96 lcaErrObjectDeleted, LCA:#15 lcaErrInvalidCollectionIndex, and
LCA:#6 lcaErrObjectNotFound exceptions. If you iterate through the collection
within a transaction, your application will maintain a consistent view of the collection
during the transaction, and it will not be affected if other client applications modify the
collection. In addition, using a transaction will result in better performance.

Managing Sessions
A given client can have at most one session in progress at a time. A session must be part
of an explicit transaction, and each transaction can contain more than one session.
Changes made in a session will not be committed until the transaction that contains the
session is committed. Sessions can be used to group operations that are within the same
transaction.

To begin a session within an explicit transaction, call the System object's
BeginSession() method. This method takes one argument, sessionClass, which
must be set to lcaSessionMove. Once a session is started, certain methods and
properties may be invoked, and these methods and properties will be considered part of
the session until the session is ended.

Consider a case where you are moving a large number of devices with subnet broadcast
connections from one channel to another, using the unacknowledged repeat messaging
service. If only some of these devices are moved, your application would detect that not
all of the devices are on the same subnet and the move would fail (since unacknowledged
repeat service for domain wide broadcast is not allowed). By grouping the moves in a
session, the actual connecting and validation does not take place until the session ends,
and so the network configuration is not affected if the operation fails.

The only network operations you should perform within sessions are those related to
changes in the physical topology of your network. This includes moving devices and
routers, adding and removing routers, and setting router classes. As a result, the
methods you can use within a session include the following methods of the AppDevices
and Routers collections: PreMove(), MoveEx(), PostMove(), Add(), and Remove().
You can also write to the Class property of a Router object within a session.

To end a session, call the EndSession() method. This method also takes the
sessionClass argument, which must be set to lcaSessionMove. When this method is
called, LNS checks for any error conditions that may have resulted from all method and
property calls that were made since the BeginSession() method was called, and
applies the changes caused by those calls to the LNS database.

LNS Programmer's Guide 67

Event Handling
LNS uses events to inform the application of a variety of network occurrences, such as
the arrival of service pin messages, or changes to the network’s configuration. You can
subscribe your application to most events by invoking the Begin<event> method (where
<event> represents the name of the event) for the desired event. Each separate
application must subscribe to an event to receive that event (i.e. one client application
subscribing to an event will not cause other client applications to receive that event). The
source of a stream of events is called the event generator. An application that subscribes
to a stream of events is called an event subscriber.

LNS implements a core set of events for installation and for monitoring and control tools.
These events are described below. The rest of this document describes when certain
events might be useful. You can also find out more about these events in the LNS Object
Server Reference help file.

• Service pin events. The OnSystemServicePin event is generated when a
service pin message is received. This event is used in several of the
installation scenarios described in Chapter 5.

• Change events. These events are generated whenever devices, routers,
channels, or subnets are added, deleted, moved or renamed, or when
device interfaces are modified.

Examples of change events include the OnChangeEvent, which is fired
any time an object in the LNS database is modified, and the
OnNodeIntfChangeEvent, which is fired every time a device’s external
interface is modified.

Note that some external interface change events are fired when the
change is made to the database and others are fired as the changes are
propagated to the devices. See the online help for the
OnNodeIntfChangeEvent event for more information on this.

• Update and update failure events. These events are generated when a
monitored network variable or message point is updated, or when an LNS
application fails to update a network variable or message point.
Examples of update events include the
OnNvMonitorPointUpdateEvent, which is fired every time a network
variable monitor point update is received, and the
OnMsgMonitorPointUpdateEvent, which is fired every time a message
monitor point update is received. Update failure events include the
OnNvUpdateErrorEvent and OnNvMonitorPointErrorEvent events.

• Commissioning status change events for devices and routers. The
OnCommission event is generated whenever the commission status of an
application device or router changes. Whenever a change that affects the
configuration of a device or router is made to the LNS database and that
device or router’s CommissionStatus property is set to
lcaCommissionUpdatesCurrent (indicating that the device has no
pending configuration changes), LNS will generate an OnCommission
event to indicate that the device or router now has pending updates (and
the CommissionStatus property will be set to
lcaCommissionUpdatesPending).

 LNS Programmer's Guide 68

The OnCommission event will also be generated whenever the LNS
Object Server propagates, or fails to propagate changes to a device or
router.

This event is useful if you want to initiate operations as soon as a device’s
network image is up-to-date. For example, you might use it to determine
when to set a device online after its network image has been updated by
an automated installation tool. You could also use it to provide feedback
to a user about the configuration state of devices or routers on your
network. For example, when building a connection, you might want to be
informed of devices that could not be updated. Or, upon receiving a
commission status change event with an “update failed” code, your
application could indicate this by drawing a red circle around the device’s
icon. Later, when the device is reattached to the network and the Object
Server refreshes the device’s network image, your application can remove
the red circle upon receiving a commissioning status change event with
an "update succeeded" code.

• Attach/detach events. The OnAttachment event is generated when the
attachment status of an AppDevice or Router changes. Once an
application device or router has been commissioned, it can be monitored
via periodic pinging to ensure it is attached. A change in the attachment
status results in this event being generated. Note that the
attachment/detachment events can also be used to monitor the presence
of other remote Full client applications on the network.

• Licensing events. You can use the OnLicenseEvent event to monitor
when the licensing status of the LNS Server changes. This event is
generated upon device crediting, device debiting, deficit credit usage, and
license expiration.

• Missed-event events. The OnMissedEvent event is generated for Full
client applications when one or more events were generated, but not
received by subscribers. For example, missed events could occur while
your application’s Network Service Device is being updated. This event
will contain information about how many events were missed and
whether the missed events are recoverable. You can use the
SetEventSyncMode method to determine whether missed events can be
recovered or not, and you can use the DoEventSync method to maintain
event synchronization in the case of missed events. Consult the LNS
Object Server Reference help file for more information on these methods.

When implementing an event handler for any of the LNS-generated events discussed in
this document, the developer should take into account the following guidelines:

• Each event handler must be implemented as an IDispatch() method
with a valid DISPID. The valid DISPIDs you can use with LNS are
included in the ConstEventIds constant. For a complete list, see the
help page for the ConstEventIds constant in the LNS Object Server
Reference help file. LNS does not query your event sink object for
DISPIDs by name. This is usually handled automatically by the
application framework (e.g. ATL, MFC, Visual Basic) you are using.

• When not using direct callbacks, your application must service its
Windows Message Queue in order to receive events. In addition to not
receiving events, your application will appear to leak memory while the
queue is not serviced. This is usually only a concern for console or

LNS Programmer's Guide 69

Windows service applications. For more information on direct callbacks,
see Multi-Threading and LNS Applications on page 316.

• Each event handler should process the event, and return quickly. New
events cannot be processed by a client until the current event handler
returns.

• Event handlers should not try to release any event object parameters, per
COM rules. LNS will handle this itself on return from the event handler.
If a client needs to make a copy of an object parameter, it must AddRef()
the object to ensure it remains valid. For more information on this, see
Avoiding Memory Leaks with LNS on page 317.

• Where possible, event handlers should avoid making new calls into LNS
(especially modifying calls), except to extract information from any
passed-in object parameters. This should not cause direct problems, but
no further events will be processed until the event handler returns when
using direct callbacks. As an alternative, you can post a Windows
message to your main thread for further processing.

• Transactions within event handlers are treated the same as outside event
handlers. In particular, any operations performed within in an event
handler will become a part of the current transaction.

• Event handlers should not start or terminate any transactions, especially
when using direct callbacks, except for cancellation of explicit
transactions from within an OnNssIdleEvent event handler.

• Event handlers will be executed from one of several non-client threads
when using direct callbacks. You may need to keep this in mind for
thread safety, e.g. if your application makes use of thread local storage.
For more information on direct callbacks and LNS, see Multi-Threading
and LNS Applications on page 316.

• Applications should not subscribe to an event unless the application is
prepared to withdraw useful information from an event, as receiving but
not responding to events causes undesirable performance degradation.
This can also consume a large amount of network bandwidth, particularly
for Full client applications.

Exception Handling
As mentioned in the LNS Components section in Chapter 3 of this document, LNS
defines a set of exceptions that will be returned when an operation fails for any reason.
With the enhanced support for ATL in LNS Turbo Edition, there are now several ways to
handle runtime errors and warnings. Most applications have a try/catch clause (or some
similar construct) for general exceptions or COM errors, such as ‘out of memory’ or
‘access violation’.

Every property and method in LNS has at least two public interfaces: one that returns
an error code, and one that does not. For example, ILcaAppDevices.get_Item()
returns HRESULT error codes and does not throw exceptions for LNS-specific error
conditions, and ILcaAppDevices.GetItem() uses exceptions to notify the application
of error conditions. If the developer chooses the interface that does not return an error
code, then their catch clause will catch and handle the error. When using this type of
interface, both errors and update warnings will be thrown as COM exceptions.

 LNS Programmer's Guide 70

If the developer chooses the interface that returns an error code, then the catch clause
will not be invoked upon an LNS error or warning for that invocation. Instead, the
returned exception will contain an error code, 0x8004yyyy, where yyyy represents an
LNS error code (i.e. 0x4269) or an LNS warning code (i.e. 0x0FBE). For a complete list of
the exceptions LNS may return, see the LNS Errors Online Reference section of the LNS
Object Server Reference.

Some properties and methods normally return an object, e.g. the Add() method of the
AppDevices collection, and some return a value. However, if an exception is generated,
the return value has no meaning and is not used, and the returned object (were it to be
non-zero) is not valid. Likewise, when you use the interface that returns HRESULT
codes instead of producing exceptions, the accessors return data results via pointers
(output parameters). In case the HRESULT code indicates failure, the result pointer does
not refer to valid data.

Note that when making changes inside of an explicit transaction, the updates are
deferred until the transaction is committed. Therefore, update warnings are never
thrown or returned when methods are called from within a transaction, but may be
thrown or returned when the CommitTransaction() method is called. However,
warnings or errors related to parameters provided to a method within the transaction
may be reported before you call the CommitTransaction() method. For example,
calling the AddTarget() method with a bad target reference parameter may result in an
immediate error condition.

You also need to consider the pairing requirements for open and close statements, and
StartTransaction() and CommitTransaction() statements. If an open operation
was successful, you should always make sure to invoke the matching close operation.
However, if the open failed, it may not make sense to perform the matching close
operation (although the close operation should not cause any problems in this case).
Transactions have a different requirement. After the StartTransaction() method has
been called, your application will eventually need to invoke the CommitTransaction()
method or the CancelTransaction() method. You should note that if the call to
CommitTransaction() fails, you still need to invoke the CancelTransaction()
method to cancel the transaction.

Terminating an LNS Application
You should terminate any LNS application, regardless of client type, by following these
steps:

1. Stop all monitoring and control tasks. If using permanent monitor sets,
those MonitorSet objects should be closed. For more information on
monitor and control, see Chapter 9, Monitor and Control.

2. If you are operating in server-dependent mode (i.e. not as an Independent
client), close each open System object by invoking its Close() method. If
the application is a Local or Full client, this detaches the LNS Object
Server from the network. If the application is a Local client, and the LNS
Server application was automatically launched by an LNS application,
this also shuts down the LNS Server application. For Lightweight clients,
this method de-registers the application from the LNS Server.
MySystem.Close()

3. Close each open Network with the Close() method. If you are running

LNS Programmer's Guide 71

an independent client, use the CloseIndependent() method.

MyNetwork.Close()

4. Close the ObjectServer control by invoking its Close() method.

ObjectServer.Close()

 LNS Programmer's Guide 72

LNS Programmer's Guide 73

Chapter 5 - Network

Management : Installing a
Network

This chapter describes how you can use LNS to install and
configure a LONWORKS network. This includes descriptions of
three installation scenarios you can use: automatic
installation, ad hoc installation, and engineered mode
installation.

 LNS Programmer's Guide 74

LNS Network Installation Scenarios
To understand what is required to install LONWORKS devices on a LONWORKS network,
you should consider the types of control systems that LONWORKS networks replace.
Many conventional control systems use wiring harnesses or point-to-point wires. In these
systems, the wiring between devices serves two purposes when the devices are installed.
It physically interconnects the devices, and it determines which control signals should be
sent to which device. Once attached to the wire, the behavior and interaction among the
devices is completely defined.

Other control systems use a master-slave architecture, and require DIP switches or dials
on each device to specify the device’s address. The device addresses are predefined and
based on the control algorithm in the master. When these devices are installed, the
master polls each address, and the appropriate device responds. Such systems are
usually limited to a small number of devices, and changes to system behavior usually
require resetting the DIP switches on each device, and modifying the master control
software.

A LONWORKS network consists of intelligent devices called nodes or application devices
that are connected by one or more communications media. Application devices
communicate with one another using the LONWORKS protocol (also referred to as the
LonTalk protocol). Each intelligent device on the network, e.g. a programmable
thermostat in a building control system, is a LONWORKS application device. The devices
communicate with one another across a shared communications medium, such as a
twisted pair cable, a power line circuit, or an RF link. Figure 5.1 shows the wiring
difference between a conventional system and a LONWORKS network.

Figure 5.1 Wire Reduction in a LONWORKS Network

The devices on a LONWORKS network contain objects that respond to a variety of inputs,
and produce desired outputs. Although the function of a given device may be quite
simple, the interaction among devices allows LONWORKS networks to perform complex
tasks. A benefit of LONWORKS networks is that a small number of common device types
can perform a broad spectrum of different functions, depending on how they are
configured and logically connected.

In a LONWORKS network, devices share their physical media (e.g. twisted-pair wire or a
power line circuit), which eliminates the redundant point-to-point wiring found in
conventional control systems. Without point-to-point wiring (e.g. a light switch wired to a
lamp) the physical attachment no longer uniquely identifies a device. In a LONWORKS
network, the physical attachment only provides a path for devices to send and receive
messages. It does not tell the devices which other devices they should send data to.
Therefore, in addition to physically attaching the devices to the network, you also need to
perform the following tasks when installing a LONWORKS network:

• Assign a network address to each device. A network address identifies
which application device a LONWORKS messages should be sent to, just as
a postal address identifies which house a letter should be delivered to. A

LNS Programmer's Guide 75

device’s network address consists of three components — the device’s
domain, the device’s subnet, and the device’s subnet ID. The LNS Object
Server is responsible for assigning each device a unique network address
when the device is installed.

• Define the information that devices share with one another. Devices
communicate with one another using high-level objects called network
variables, or low-level messages. Interoperable network devices send
messages using implicit addressing for network variable updates and
application messages. When using implicit addressing, the Neuron Chip
firmware on the application device builds and sends network variable and
application messages using information contained in tables in its
EEPROM. In order to send application messages in this fashion, the
device application specifies a message tag when sending the message.
The message tag is associated with an address table entry stored in the
device’s EEPROM.

When an LNS application requests that a device share information with
another device, an address table entry is allocated and configured on the
device sending the information. This address table entry associates the
output defined by the device application (either a network variable or a
message tag) with the domain/subnet/node address, group address or
broadcast address of the device or devices receiving the information. The
process of creating and configuring these tables is called binding or
connecting. The addressing established during this process is called a
connection. The LNS Object Server is responsible for allocating the
network resources used by connections.

• Set site-specific parameters. LONWORKS technology provides the
flexibility to customize and tune network behavior and response
characteristics, if required by the system. For example, network
performance can be fine-tuned by assigning devices to priority slots on a
channel. You can assign these priority slots with LNS. You can use LNS
to further customize devices by setting application-specific information
such as location, temperature set points, and calibration tables.

Installation Scenarios
The first step in writing an LNS application to install a LONWORKS network is to select
the installation scenario or scenarios that the application will support. Based on your
knowledge of the network and the capabilities of the installation personnel, you must
decide what steps the installer will go through to add devices and build connections, how
much flexibility will be required, and what tasks can be automated by your LNS
application. Once you choose an installation scenario, you can map the scenario to the
required objects in the LNS database, and add intelligence to the application to automate
tasks as appropriate.

The installation scenario you use to install your network determines the "look and feel"
of the network as viewed by the person responsible for network installation. The best
scenario for any given network depends on many factors, including the skill level of the
installer, the amount of flexibility desired, and the requirements of the end-user. In all
cases, the installation process should be automated as much as possible. Automation
both simplifies and speeds network installation.

The three installation scenarios are automatic installation, engineered mode installation,
and ad hoc installation. Note that you can install a network using a mix of these

 LNS Programmer's Guide 76

scenarios. For example, you could begin defining a network’s devices and connections
using the engineered system scenario. Once the network is commissioned, you could add
additional devices to it using the ad hoc scenario.

Engineered Mode Installation
In the engineered mode installation, installation is a two-step process consisting of a
definition phase and a commissioning phase. In the definition phase, the application
defines all of the network configuration information in the LNS database, without
modifying the physical network. In the commissioning phase, the application loads the
configuration information defined during the definition stage into the physical network.

The advantage of the engineered mode installation scenario is that the network
installation on-site is quick, easy, and error free, since most of the time-consuming data
entry and processing is done off-site. This scenario is often used when installing systems
that require preplanning, when building multiple clones of a single network design, or
when installing systems that are built in response to a bid.

For more information on engineered mode installation, see Engineered Mode on page 77.

Ad Hoc Installation
In the ad hoc installation scenario, installation is a one-step process. In this scenario, a
network tool loads the network configuration information into each device as the devices
are physically installed on the network, and then creates connections between them. The
LNS application provides a user interface that controls the amount of information and
the sequencing of the information required.

This is different from the engineered system scenario in that information is loaded
incrementally. It is different from the automatic installation scenario in that the installer
makes decisions about the network configuration instead of the tool (although the tool
may provide assistance). The goal of ad hoc installation is to integrate all installation
activities into a single step. Ad hoc installation offers the most flexibility, since it allows
the installer to make decisions on-site. Since this scenario can be time consuming, it is
typically used in conjunction with the engineered system scenario for large installations.
Ad hoc is the installation scenario typically used when servicing an existing network.

Automatic Installation
Automatic installation is usually accomplished by an onsite network tool with a minimal
user interface. The network tool automates all installation tasks, so it must discover
when new devices have been attached to the network, and form network variable and
message tag connections between the discovered devices in a way that makes sense in
the context of the network design. The network tool must also be able to determine when
devices have been removed from the network, and reconfigure the network accordingly.

To be able to automate installation and eliminate or minimize end-user interaction, the
network tool’s application program needs to be very knowledgeable about the system it is
managing. For this reason, automatic installation is most commonly used in single
vendor systems, or in systems that are dedicated to a single function.

For more information on automatic installation, see Automatic Installation on page 89.

LNS Programmer's Guide 77

Engineered Mode
In the engineered mode installation scenario, the network installation consists of two
phases:

1. A definition phase in which the user defines the configuration of the
devices and connections on the network in the LNS database without
physically modifying the network.

2. A commissioning phase in which the application loads the network
configuration created during the definition phase from the LNS database
into the physical devices on the network. Application images may also be
loaded during this phase, and some configuration properties may be
adjusted based on testing in order to properly calibrate the system.

Definition Phase
In the definition phase, the network configuration is defined off-site and loaded into the
LNS database, without modifying the physical network. The LNS application defines the
user interface that is used to enter the information. The interface can be anything from a
simple keypad, to a graphic display. The amount of information that the user must enter
is under the control of the application. In the most general case, the user could enter all
the information related to the network, including what devices will be installed on the
network, and how they will be connected. Alternatively, the application could automate
certain parts of the definition process. For example, the user may only need to pick a
configuration from a list of options, or the user may only need to enter device
configuration information while the tool automates connections.

The steps you need to follow to accomplish the tasks involved in the definition phase are
shown in figure 5.2. They are described in more detail in the section following figure 5.2.

 LNS Programmer's Guide 78

Initialize the Object Server and
create or obtain the network you
are defining. Open the network’s
System object. See Chapter 4
for more information on these

tasks.

Connect a device to other
devices on the network:
NvHub.AddTarget()
NvHub.Connect()

For more information on
connections, see Connecting

Devices in Chapter 6.

Set the application into Engineered mode:
Set NetworkServiceDevice.NetworkInterface = NOTHING

Add an AppDevice object for the new device to to the
AppDevices collection of the selected Subsystem:
Set MyAppDevices = Subsystem.AppDevices

Set MyDevice = MyAppDevices.Add()

If you know the device’s Neuron
ID, assign it to the AppDevice

object:
MyDevice.NeuronId = <ID>

Optionally, set other device
properties. For example:

MyDevice.Priority = Prio
MyDevice.Location = Loc

Remove a device
Add a connection

Add a device

Define device templates for the devices you
are going to install:

DeviceTemplates.Add()
DeviceTemplate.Import()

Add devices and connections as your network design requires. When you have finished,
move to the commissioning phase described in the Commissioning Phase section below.

NOTE: If your network uses multiple channels, you will need to install, configure and
commission the network's routers before commissioning the application devices defined

during the definition stage.

Create or select the Subsystem
object that will contain the new

device:
Subsystems.Add()
Subsystems.Item()

Remove the device:
MyAppDevices.Remove()

Ensure that the configuration
property values in the device

are properly set.

Figure 5.2 Engineered Mode Installation Tasks - Definition Phase

The following section describes the steps listed in figure 5.2 in more detail:

1. Initialize your application, create the network that is to be installed, and
open the system. These tasks are described in Chapter 4, Programming
an LNS Application.

2. The definition phase can be performed while your application is in
engineered mode, meaning that it is not attached to the network. In this
case, your application does not need to specify a network interface.

LNS Programmer's Guide 79

Chapter 4 describes how to specify a network interface for each client
type. If your application has already done so, you can switch the
application to engineered mode by setting the NetworkInterface
property of the system's NetworkServiceDevice object to NOTHING.

Dim MyNetworkServiceDevice as LcaNetworkServiceDevice
Set MyNetworkServiceDevice = System.NetworkServiceDevice
Set MyNetworkServiceDevice.NetworkInterface = NOTHING

3. Begin defining the devices and connections on your system. To do so,
fetch the Subsystems collection from the System object, and use the
collection’s Item property to obtain the Subsystem you plan to add the
devices to. Alternatively, you can use the Add() method to create a new
Subsystem.

The returned Subsystem object contains an AppDevices collection you
can add the new devices to. You can add new devices using the
collection’s Add() method.

When using the engineered mode scenario, you must specify a
DeviceTemplate and Channel object when you call the Add() method.
If you do not specify a DeviceTemplate, you will not be able to pre-
define the device’s connections, and or pre-load its configuration
properties. You must specify the Channel object so the LNS Object
Server can properly assign network addresses and compute transaction
timers for the device when it is added to connections. For more
information on creating AppDevice objects, see Creating AppDevice
Objects on page 113.

NOTE: If your network uses multiple channels, you will also need to
define the network’s routers and channels during the definition stage. For
more information on this, and on other considerations you will need to
make when managing a network with multiple channels, see Managing
Networks with Multiple Channels on page 169.

4. If you know the Neuron ID that the device will use, enter it into the
database by writing the Neuron ID to the AppDevice object’s NeuronId
property.

MyAppDevice.NeuronId = DeviceNeuronId

It is common to obtain the devices’ Neuron ID from a sticker on the device
that contains the ID in barcode and/or readable form. In a typical
scenario, the on-site installation staff mounts and wires the physical
devices. While doing so, each device’s Neuron ID sticker is taken from the
device, and attached to a floor plan or similar document. That document
is then used during the definition phase to provide Neuron IDs to the
LNS database.

Note that the Neuron ID may also be acquired via the device’s service pin
and assigned during the commissioning phase, as described in the next
section.

5. Ensure that all configuration properties are properly set, and that they
will be downloaded to the device when it is commissioned. You can do
this by calling the DownloadConfigProperties() method on the

 LNS Programmer's Guide 80

device with the lcaConfigPropOptLoadValues and
lcaConfigPropOptSetDefaults options set.

Then, set individual configuration properties as desired using
configuration property data points. Note that some configuration
properties may need to be adjusted (or calibrated) during the
commissioning phase as portions of the system are brought online and
tested. For information on setting configuration property values, see
Writing Configuration Property Values on page 127.

6. Set the Priority and Location properties of the AppDevice object to
their desired values. Optionally, set any other properties of the
AppDevice object, as described in Configuring Devices section on page
124.

7. Repeat steps 3, 4, 5 and 6 until you have defined all the devices you plan
on adding to the network. Then, create connections between the network
variables on those devices as your network design requires. For detailed
information on creating connections and connection management, see
Connecting Devices on page 137.

8. Once you have completed these tasks, you are ready to move onto the
commissioning phase of the network installation. For more information
on this, see the next section, Commissioning Phase.

9. Figure 5.2 references additional tasks you may need to perform when
managing a network installed with this installation scenario, such as
removing devices and connections from the network. For details on how
to perform these tasks, see Other Device Management Operations on page
128.

NOTE: The following methods cannot be invoked while the LNS Object Server is in
engineered mode:

• AppDevice.Load()

• AppDevice.LoadEx()

• AppDevice.Test()

• AppDevice.UploadConfigProperties()

• AppDevice.Wink()

• System.DeconfigNetwork()

The following properties cannot be read while the LNS Object Server is in engineered
mode:

• AppDevice.SelfDocumentation

• AppDevice.State

• AppDevice.DetailInfo

• NetworkVariable.SelfDocumentation

• Router.State

• RouterSide.State

• RouterSide.DetailInfo

LNS Programmer's Guide 81

• NetworkVariable.Value

Commissioning Phase
During the commissioning phase, the configuration information defined during the
definition phase is loaded into the devices on the network. The LNS Object Server must
be attached to the network during this phase, meaning that the application must specify
a network interface. The application used for this phase can be different than the
application used for the definition phase. For example, the application used for the
definition phase may provide a more functional user interface than the application used
for the commissioning phase. In fact, the application running the commissioning phase
could be completely automated. If a different PC is used for the commissioning phase, the
network database must be transferred to the new PC and imported into its LNS Object
Server. For instructions on this, see Moving Network Databases on page 254.

It is common, but not required, for the commissioning phase to be performed locally. A
local commissioning tool allows for easy on-site trouble-shooting. However, the
commissioning phase can be performed remotely when using network interfaces such as
the SLTA-10, the i.LON 10 Ethernet Adapter or the i.LON 100 Internet Server.
Alternatively, you can connect locally to a network containing distant devices using an
Internet router such as the i.LON 600 LONWORKS/IP Server or the i.LON 1000 Internet
Server. If you plan to commission your network remotely, it is recommended that you
assign each device its Neuron ID during the definition phase.

The methods and tasks you need to perform to accomplish each task in the
commissioning phase are shown in figure 5.3.

 LNS Programmer's Guide 82

Open the network and system to be commissioned:
Set MyNetworks=ObjectServer.Networks

Set MyNetwork=MyNetworks.Item(“MyNetwork”)
MyNetwork.Open()

Specify a network interface, open the system, and set the system
management mode to lcaMgmtModePropagateConfigUpdates :

Set MySystems = MyNetwork.Systems
Set MySystem = MySystems.Item(1)

Set MyNSD.NetworkInterface = MyNetworkInterface
MySystem.Open()

MySystem.MgmtMode = lcaMgmtModePropagateConfigUpdates

Acquire the AppDevices collection for the subsystem
containing the AppDevice objects you have defined.

Perform the following steps for each device, until all devices
have been commissioned:

Bring the device online by setting the State property
of each AppDevice object to
lcaStateCnfgOnline.

MyDevice.State = lcaStateCnfgOnline

Make sure the device has
been asssigned a Neuron ID,
and then optionally load the

device’s application:
MyDevice.LoadEx()

More devices to be
commissioned?

Yes
Synchronize the device configuration properties, and commission the

device. Perform these operations within the same transaction:
MySystem.StartTransaction()

MyDevice.DownloadConfigProperties()
MyDevice.CommissionEx()
MySystem.EndTransaction()

Figure 5.3 Engineered Mode Installation Tasks - Commissioning Phase

The following section describes the steps depicted in figure 5.3 in more detail:

1. If the database was defined on a different PC, copy the database and import it into
the PC being used for the commissioning phase. For details on how you can perform
these tasks, see Chapter 10, LNS Database Management.

2. Open the network and the system, and then set the system management mode to
lcaMgmtModePropagateConfigUpdates. Before opening the system, make sure
that your application has specified a network interface.

LNS Programmer's Guide 83

Set MyNetworks = ObjectServer.Networks
Set MyNetwork = MyNetworks.Item(“Broadcasting Center”)
Set MySystems = MyNetwork.Systems
Set MySystem = MySystems.Item(1)
Set MySystem.NetworkInterface = MyNetworkInterface
MySystem.Open()
MySystem.MgmtMode = lcaMgmtModePropagateConfigUpdates

NOTE: Generally, there are many factors you need to consider when writing to the
MgmtMode property. For more information on this, see System Management Mode
Considerations on page 97.

3. Acquire the AppDevices collection for the subsystem containing the AppDevice
objects you have defined. Then, follow steps 4-8 of this procedure for each device in
the collection.

4. If a device was not assigned a Neuron ID during the definition phase, you need to
explicitly set the AppDevice object’s NeuronId property at this point. For
information on how you can use LNS to determine a device’s Neuron ID, see Neuron
ID Assignment on page 115.

5. If a device does not have the correct application image defined, you should load the
device’s application image at this point. For instructions on loading device
application images, see Loading Device Application Images on page 119.

6. Start a transaction, and commission the device with the Commission() or
CommissionEx() methods. Before committing the transaction, you should use the
DownloadConfigProperties() method to synchronize the configuration property
values in the physical device with those stored in the LNS database.

Alternatively, you could commission the device and then call the
UploadConfigProperties() method after committing the transaction to
synchronize the configuration property values in the database with those stored in
the LNS database. For more details on how you can synchronize configuration
property values, and for information on other considerations you should make when
commissioning devices, see Commissioning Devices on page 121.

NOTE: If your network uses multiple channels, you will need to commission the
network’s routers as you commission the devices. The Managing Networks with
Multiple Channels section on page 169 provides details on this, including guidelines
on the order you should follow when commissioning routers and application devices
at the same time.

7. Bring each device online by setting the State property of each AppDevice object to
lcaStateCnfgOnline.

You may wish to commission all the devices in the network first, and then set all the
devices online. This prevents superfluous network traffic generated by those devices
that are already online, network delivery errors caused by network variable updates
targeted to devices that are not yet online, and generally helps the commissioning
process proceed more efficiently.

8. As you manage the network you have created, you may need to perform other
maintenance tasks, such as the removal of devices and connections, and the
replacement of devices. For details on how you can use LNS to perform these tasks,
see Other Device Management Operations and page 128.

 LNS Programmer's Guide 84

Commissioning Phase, Multiple Networks
When commissioning multiple networks that have similar configurations, it may be most
efficient to use a "cookie cutter" approach. To do so, follow the steps described in the
Definition Phase section to create a "prototype" LNS database that contains the basic
configuration you want to apply to each network. You can then customize individual
networks from this proto-type by adding additional information on-site during the
commissioning phase, as described below:

1. Initialize your application in engineered mode, meaning that the application
explicitly resets the network interface and detaches from the network. Chapter 4
describes how to specify a network interface for each client type.

Set MyNetworkServiceDevice.NetworkInterface = NOTHING

2. Create device templates for the devices on that network by importing external
interface files. Then, define each device, adjust its configuration property values,
and create connections between the devices.

For detailed information on how to define devices in engineered mode, see the
Definition Phase section earlier in this chapter.

3. Create your common reference database by making a backup copy of the network
folder. You can use the Backup() method to do so. See Chapter 10, LNS
Database Management, for more information on the Backup() method.

4. Rename the database copy created in step 3 as desired, or create a copy of the
backup using another directory with a name of your choice.

5. To load the reference database into a new Network object, access the
ObjectServer object’s Networks collection, and invoke the collection’s Add()
method. Specify the createDatabase parameter as False, and the
databasePath parameter as the path to the copy of the reference database.

6. Assign a suitable network interface to the NetworkServiceDevice object’s
NetworkInterface property to exit engineered mode and attach the application
to the physical network.

7. Open the system by accessing the System object for the newly created network,
and calling the Open() method.

8. Set the DomainId property to the domain ID for the site. For shared media,
Echelon recommends that you use the Neuron ID of the on-site PC’s network
interface as the domain ID. For standard network interfaces, this ensures
uniqueness as long as the same network interface is not used for multiple
installations on the same shared media.

If the same network interface is used for multiple installations, Echelon
recommends using a random domain ID. For networks containing shared media
such as powerline or RF channels or shared twisted-pair channels, Echelon
recommends using a 6-byte domain ID to ensure uniqueness. For most private
networks, a 1-byte domain ID is sufficient, and allows for optimum performance.
The domain ID is automatically selected when the shared media installation
option is specified before the system is opened for the first time.

LNS Programmer's Guide 85

9. Set the System object’s MgmtMode property to
lcaMgmtModePropagateConfigUpdates.

10. If any of the devices' Neuron IDs have not been specified, acquire and assign
them using the methods described in the Neuron ID Assignment section on page
115.

11. If a device does not have the correct application image defined, you should load
the device’s application image at this point. For instructions on loading device
application images, see Loading Device Application Images on page 119.

12. For each device, start a transaction and commission the device with the
Commission() or CommissionEx() methods. Before committing the
transaction, you should you should use the DownloadConfigProperties()
method to synchronize the configuration property values in the physical device
with those stored in the LNS database. For details on how you can do so, and for
information on other considerations you should make when commissioning
devices, see Commissioning Devices on page 121.

13. Add and connect any additional devices that are not included in the basic
network configuration defined by the prototype database.

Ad Hoc Installation
In the ad hoc installation scenario, the LNS application loads the network configuration
information into the physical devices on the network as the installer defines devices and
connections in the LNS database. The LNS application can provide a user interface that
controls the amount of information and sequencing of the information required, or it
could automate as much of the installation process as desired. The basic tasks you will
need to perform during an ad hoc installation are shown in figure 5.4. These are
described in more detail in the following sections.

 LNS Programmer's Guide 86

Initialize the Object Server, create the network, and open the system. Make
sure that your application is attached to the network when doing so. See

Chapter 4 for more information on these tasks.

Make sure that the system management mode is set to propagate device configuration updates:
System.MgmtMode = lcaMgmtModePropagateConfigUpdates

Create or select the Subsystem object that will
contain the new device:
Subsystems.Add()
Subsystems.Item()

Add an AppDevice object for the new device to to
the AppDevices collection of the selected

Subsystem:
Set MyAppDevices = Subsystem.AppDevices

Set MyDevice = MyAppDevices.Add()

Acquire the Neuron ID for the device as
described in the Neuron ID Assignment section
in Chapter 6 of this document. Then, assign the

Neuron ID to the new AppDevice object.
MyDevice.NeuronId = AcquiredId

Set the device’s Priority and Location
properties to their desired values:
MyDevice.Priority = Prio
MyDevice.Location = Loc

Set the device to the online state.
MyDevice.State = lcaStateCnfgOnline

Connect a device to other
devices on the network:
NvHub.AddTarget()
NvHub.Connect()

For more information on
connections, see Connecting

Devices in Chapter 6.

Remove the device:
AppDevices.Remove()

Choose a task:

Create a device

Add a connection

Remove a device

Optionally. load the device’s application
image:

MyDevice.LoadEx()

Commission the device, and then synchronize the device
configuration properties, and commission the device. You can also

update any configuration property values in this step. Perform these
operations within the same transaction:
MySystem.StartTransaction()

MyDevice.CommissionEx()
MyDevice.DownloadConfigProperties()

MySystem.EndTransaction()

Figure 5.4 Ad Hoc Installation Tasks

The following section describes the tasks depicted in figure 5.4 in more detail. Note that
if your network uses multiple channels, you will need to define the network’s channels
and install and configure the network’s routers as you define your devices. For more
information on this, and on other considerations you will need to make when managing a
network with multiple channels, see Managing Networks with Multiple Channels on
page 169.

1. Initialize your application, create the network that is to be installed, and open
the system. Make sure that your application is attached to the network at this
point (meaning that is has specified a network interface). These tasks are
described in Chapter 4, Programming an LNS Application.

LNS Programmer's Guide 87

2. You can now begin defining the devices and connections on your network. Fetch
the Subsystems collection from the System object, and then use the collection’s
Item property to obtain the Subsystem you want to add the devices to.
Alternatively, you can use the Add() method to create a new Subsystem.

The returned Subsystem contains an AppDevices collection. You can add new
devices using the AppDevices collection’s Add() method. When creating an
AppDevice object with the ad hoc installation scenario, you are not required to
specify the device’s DeviceTemplate and channel. When you commission the
device later, the LNS Object Server will automatically detect the device’s
external interface, create a DeviceTemplate object as needed, and query the
device across the network for all relevant details.

However, Echelon recommends that you specify the device template whenever
possible, since doing so is more efficient and provides more complete information
than creating the device template by reading the information from the device.
The LNS Object Server will also automatically detect the channel the device is
connected to, and assign a subnet suitable for that channel.

For more information on creating AppDevice objects, see Creating AppDevice
Objects on page 113.

3. Associate a physical device with the newly created AppDevice by assigning its
Neuron ID. You can supply the Neuron ID using any of the three methods
described in the Neuron ID Assignment section on page 115.

4. Load the application images for any devices that require application image
loading. To do so, invoke the Load() or LoadEx() methods on each
AppDevice. For more information on loading device application images, see
Loading Device Application Images on page 119.

5. Start a transaction, and commission each device with the Commission() or
CommissionEx() methods. After you commission each device, you should
synchronize the configuration property values in the physical device with those
stored in the LNS database before committing the transaction.

If the application’s configuration properties definitions are known (meaning that
the ConfigPropertiesAvailable property of the device’s Interface is set to
True), set all values to their defaults by calling the
DownloadConfigProperties() method with the
lcaConfigPropOptLoadValues and lcaConfigPropOptSetDefaults options
set. Then, use data points to update any configuration property values and
commit the transaction.

You can bypass this step if you want to preserve the configuration property
values currently stored in the physical device. If you do so, you will need to
upload the values from the device after you commission it, as described in step 6.
For more information on these tasks, see Application-specific Configuration Data
on page 125.

Note that if the ConfigPropertiesAvailable property is set to False, you
cannot update the configuration property values until after this transaction has
been committed, and the configuration property definitions have been loaded.
This condition occurs if the device’s template was uploaded from the device
(rather than imported from an external interface file), and the configuration

 LNS Programmer's Guide 88

properties for that template were not uploaded after another device with the
same template was commissioned. The next step of this procedure describes how
you can upload the configuration properties for the template.

MySystem.StartTransaction
MyDevice.Commission()
Set MyInterface = MyDevice.Interface
If MyInterface.ConfigPropertiesAvailable Then
 MyDevice.DownloadConfigProperties _
 (lcaConfigPropOptLoadValues OR lcaConfigPropOptSetDefaults)
End If
MySystem.CommitTransaction()

For more information on other considerations you should make when
commissioning devices, see Commissioning Devices on page 121.

6. If the ConfigPropertiesAvailable property was set to False in Step 5, or if
you bypassed calling the DownloadConfigProperties() method in Step 5 to
preserve the configuration property values stored in the physical device, upload
the configuration property definitions into the LNS database with the
UploadConfigProperties() method. This will change the
ConfigPropertiesAvailable property on all devices using this template to
True (or False, depending on the device’s implementation).

Typically, you will also want to upload the values from the device and set the
defaults from the device by specifying the lcaConfigPropOptLoadValues and
lcaConfigPropOptSetDefaults options when you call the
UploadConfigProperties() method. Alternatively, you could update some or
all of the configuration property values using data points, and then call
UploadConfigurationProperties() with the
lcaConfigPropOptLoadValues, lcaConfigPropOptSetDefaults and
lcaConfigPropOptLoadUnknown options set to upload all values not
specifically set, and then set the defaults to the values defined for this device.
Note that for optimal performances, you should set all configuration property
values in a single transaction. For more information on these tasks, see
Application-specific Configuration Data on page 125.

7. Set the Priority and Location properties of the AppDevice object to their
desired values. Optionally, set any other properties of the AppDevice object as
described in Generic Configuration Data on page 124. You can perform this step
in the same transaction as when you commission the device.

8. Bring all the devices online by setting the State property of each AppDevice
object to lcaStateCnfgOnline.

9. Figure 5.4 references additional tasks you may need to perform when managing
the network you create with the ad hoc installation scenario, such as removing
devices, creating connections, and replacing devices. For details on how to
perform these tasks, see Other Device Management Operations on page 128.

NOTE: Depending on the system management mode, the changes you make to each
device may or may not be propagated to the physical device on the network as you invoke
each method. For more information on this, see the System Management Mode
Considerations section later in this chapter.

LNS Programmer's Guide 89

Automatic Installation
In the automatic installation scenario, an embedded network tool automates installation
tasks so that little or no user interaction is required. The steps you will need to take
when performing an automatic installation are shown in figures 5.5. The sections
following figure 5.5 describe these tasks in more detail.

 LNS Programmer's Guide 90

Initialize the Object Server and
create the network. Make sure

that the application has specified
a network interface, and then

open the new network’s System
object. See Chapter 4 for more

information on these tasks.

Choose task:

Create or select the Subsystem
object that will contain the newly

discovered device:
MySubsystems.Add()
MySubsystems.Item()

Remove the device from the
collection

MyAppDevices.Remove()Install the newly discovered devices on the
Subsystem, as described in the Installing

Devices section below.

Add each new device to connections as
your network design requires. For detailed

information on creating connections, see the
Connecting Devices section in Chapter 6 of

this document.

Find each new device that has been
installed on the system, as described in the
Discovering When New Devices Have Been

Attached to the System section below.

Determine if any devices have been
detached from the network, as described in
Determining When Devices are Detached or

Replaced section below.

Define device templates for the devices you
plan on installing:

MyDeviceTemplates.Add()
MyDeviceTemplate.Import()

Use the Replace() or
ReplaceEx() method to

replace the device.

Device detached…. Device replaced….

Make sure that the system management mode is set to propagate
device configuration updates:

MySystem.Mgmt = lcaMgmtModePropagateConfigUpdates

Figure 5.5 Automatic Installation Tasks

LNS Programmer's Guide 91

Discovering and Installing Devices
There are several main phases involved in the automatic installation scenario depicted in
Figure 5.5. These phases are listed below:

1. The first step is to discover the devices that have been added to the network. There
are several ways to discover new devices. For more information, see Discovering
When New Devices are Attached to the Network on page 91.

2. Once you have discovered a new device, you need to define and configure the device
in the LNS database, and connect it to other devices on your network. For more
information on these tasks, see Installing Devices on page 93.

3. You will also need to program your application to determine when devices are
removed or replaced on the network, and update the LNS database accordingly. For
more information on this, see Discovering When Devices are Detached or Replaced on
page 95.

Discovering When New Devices are Attached to the Network
 The first major step in the automatic installation scenario is for the application to
discover the devices that are attached to the network. There are three ways your LNS
application can do so:

• Allow the LNS Object Server to discover the devices using the
background discovery process. Devices discovered by this process will be
represented as AppDevice objects in the Discovered.Uninstalled
subsystem. The Discovered.Uninstalled subsystem is managed by
LNS. The background discovery interval determines the time it will take
for the LNS Object Server to find a device. The default for this interval is
180 seconds, and you can change this value by writing to the System
object’s DiscoveryInterval property. If a device is configured, the
background discovery process will ignore it. Therefore, the background
discovery process will not discover configured devices that you move from
one network to another. For this reason, device designers usually provide
a mechanism within an application that will deconfigure a device when it
is moved. For example, if the application detects an asserted service pin
for 10 seconds following a power cycle, it could call the Neuron C
go_unconfigured() function.

When using this approach, you should use the System object’s
BeginChangeEvent() method to subscribe your application to the
OnChangeEvent events. Once you do so, LNS will generate an
OnChangeEvent event each time it discovers a new device or router on
the system. See the LNS Object Server Reference help file for more
information on the OnChangeEvent event.

Note that the OnChangeEvent event reports changes to the LNS network
database. Thus, by the time the OnChangeEvent reports the detection of
a new physical device, the AppDevice object associated with that device
exists in the network database and is ready for use by your application.
Subscribing to the related OnAttachment event provides similar
information, but relates to network operations. Thus, an AppDevice
object associated with a physical device may not have been added to the

 LNS Programmer's Guide 92

network database when your application receives the OnAttachment
event.

• Force the LNS Object Server to discover configured devices on a given
domain, and all unconfigured devices on the network, by calling the
System object’s DiscoverDevices() method. Unconfigured devices
discovered by this method will be placed in the
Discovered.Uninstalled subsystem. Configured devices will be
placed in the Discovered.Installed subsystem.

This method cannot be used to discover devices configured on a domain
other than the system domain if those devices are on the far side of a
router whose class is lcaConfiguredRouter, lcaBridge or
lcaPermananentBridge.

• Cause the device to inform the LNS Object Server that it has been
attached to the network by sending a service pin message. The device’s
application program or hardware could be designed to send a service pin
message when the device is attached to the network, or the installation
staff could simply press the device’s service pin. To discover a device via
the service pin message, your application should call the
BeginServicePinEvent() method to subscribe to the
OnSystemServicePin event, and process the service pin events as they
are generated.

Alternatively, your application can set the System object’s
RegisterServicePin property to True. The LNS Object Server will
then add an AppDevice object to the Discovered.Uninstalled
subsystem (and generate an OnChangeEvent event) when it receives a
service pin message from any unconfigured device. Subscription to service
pin message events is not required in this case. If you use this approach,
pressing the device’s service pin at the completion of physical installation
is not required, but it allows for instant recognition of the newly added
device.

Once the LNS Object Server has discovered a device, you should perform the tasks
described in the Installing Devices section on page 93 to configure the device in the LNS
database. Following that, you can also begin adding the device to connections on your
network.

Determining a Device's Location
Before using LNS to discover the devices attached to a network, you should note that
most LNS applications will need to know the physical location of a device in order to
automate installation in some scenarios. For example, suppose a building is composed of
a group of rooms, each of which contains a group of light devices and a switch device. All
of the light devices in a room must be connected to the switch device in that particular
room. The application can identify the type of each device by its program ID, which is
stored in the LNS database, but it needs another to way to determine which light devices
are in the same room as a given switch device.

In order for an application to determine the location of a device, a user needs to supply
the application with the information, or the device itself must provide the information.
One way for a device to communicate its physical location is by using the location field in
its Neuron Chip. The location field is a 6-byte field used for storing installation-related
information.

LNS Programmer's Guide 93

For a device to provide location information to the application, there must be some way
for the device to know its location. For example, each device’s location field can be
programmed with a location code, and each device can be sent to the field with
instructions for where the device is to be attached to the network. Alternately, a hand-
held tool could be used to set the location string of each device at installation time. If the
LNS application contains a table that maps codes to physical locations, the application
can fetch the location code using the AppDevice object’s LocationInNeuron property,
and determine where the device is located.

Another way for a device to determine its location is to provide a way for it to read its
location using I/O pins. You could achieve this by embedding location information at each
attachment site. The network connector could contain a 6-bit connector ID that allows
the device to tell which of 64 connectors it has been attached to. Alternately, a serial ID
device such as a Dallas touch memory could be used to provide a unique ID for each
location while using fewer I/O pins on each application device. The use of I/O pins may
require that device’s program is running, so that it can read the I/O pins. If such
behavior is required, the device must be delivered in the configured state or the device’s
application must use the Neuron C pragma run_unconfigured compiler directive.

There is another method to determine a device’s approximate location. This method is
less precise, as it provides a device’s approximate location, but it is fully automatic. When
using automatic installation, LNS will automatically detect the channel each application
device is attached to, as long as the network only uses configured routers. The channel is
an indicator for the device’s approximate location and may assist with automatic location
detection. Further, if pinging is enabled on the system, the LNS pinging process will
verify the device’s presence on the channel it was previously attached to. See the
Discovering When New Devices are Attached to the Network section later in this chapter
for more details on this.

If a device can determine its own location, it may also be able determine when it has
been moved. This information can be used as part of the installation scenario. For
example, if a temperature sensor is moved from room 1 to room 5, the sensor can tell that
it has moved and, under application control, activate its service pin to issue a "request for
service". When the LNS application receives the service pin event, it can check the
database and see that the device was already installed in the system as part of another
room, and then reconnect the network to make the sensor part of the control scheme for
room 5.

Installing Devices
Once your application has discovered a newly discovered device, you need to define the
device in the LNS database, and connect it to other devices on the network. Depending
on how the device was discovered, the steps required to do so may vary slightly. These
tasks are described below.

Note that if your network uses multiple channels, you will need to install and configure
the network’s routers, and create channels, as you define your devices. For more
information on routers, and on special considerations you may need to make when
installing devices on a network with multiple channels, see Installing Devices With
Multiple Channels on page 175.

1. In several of the device discovery methods described in this section, an AppDevice
object is added to the Discovered.Uninstalled subsystem’s AppDevices
collection each time a new device is discovered. You need to move each device to

 LNS Programmer's Guide 94

another subsystem before installing the device. Iterate through the AppDevices
collection to find the device you want to move, and then call the AddReference()
method on the destination Subsystem to move the device to the destination
subsystem.

If your application discovered a newly attached device via the OnSystemServicePin
event, the new device’s handle would typically have been returned with the event.
You can use that to locate the AppDevice in the Discovered.Uninstalled
subsystem by calling the ItemByHandle() method. Then, call the AddReference()
method on the destination Subsystem for that device to move it to its desired
location. However, if the device has not yet been added to the
Discovered.Uninstalled subsystem’s AppDevices collection, the device handle
returned in the OnSystemServicePin event will be 0. In this case, your application
could set the System object’s RegisterServicePin property to True and evaluate
the OnChangeEvent event instead of the OnSystemServicePin event, as the
OnChangeEvent event notifies the application on the completion of a database
change. Thus, by the time the application receives the OnChangeEvent event, the
related AppDevice object will be ready for use and could be acquired using any
appropriate means.

NOTE: The DeviceTemplate object assigned to each AppDevice specifies that
device’s external interface definition. You should check to make sure that the
AppDevice is using the correct DeviceTemplate object before proceeding. For more
information on DeviceTemplate objects and external interfaces, see Device
Interfaces on page 104.

2. Associate the new AppDevice object with the appropriate physical device on the
network by setting its NeuronId property. LNS will have already set the NeuronId
property for any devices added to the Discovered.Uninstalled subsystem. There
are several ways to use LNS to determine a device’s Neuron ID. For more
information, see Neuron ID Assignment on page 115.

MyAppDevice.NeuronId = AcquiredNeuronId

3. If you need to update the device’s application image, you should do so now. For more
information on loading device applications, see Loading Device Application Images on
page 119.

4. For each device, start a transaction, and commission the device with the
Commission() or CommissionEx() methods. Before committing the transaction,
you should use the DownloadConfigProperties() method to synchronize the
configuration property values in the physical device with those stored in the LNS
database. Note that the ConfigPropertiesAvailable property of the device’s
Interface must be set to True for you to call DownloadConfigProperties() at
this point.

Alternatively, you could commission the device and then call the
UploadConfigProperties() method after committing the transaction to
synchronize the configuration property values in the database with those stored in
the LNS database. For more details on how you can synchronize configuration
property values, and for information on other considerations you should make when
commissioning devices, see Commissioning Devices on page 121.

MySystem.StartTransaction()
If MyInterface.ConfigPropertiesAvailable Then

LNS Programmer's Guide 95

 MyAppDevice.DownloadConfigProperties_
 (lcaConfigPropOptLoadValues OR lcaConfigPropOptSetDefaults)
End If
MyAppDevice.CommissionEx(lcaCommissionFlagNone)
MySystem.EndTransaction()

5. If the ConfigPropertiesAvailable property was set to False in Step 4, or if you
bypassed calling the DownloadConfigProperties() method in Step 4 to preserve
the configuration property values stored in the physical device, upload the
configuration property definitions into the LNS database with the
UploadConfigProperties() method. This will set the
ConfigPropertiesAvailable property on all devices using this template to True
(or False, depending on the device’s implementation).

Typically, you will also want to upload the values from the device and set the
defaults from the device by specifying the lcaConfigPropOptLoadValues and
lcaConfigPropOptSetDefaults options when you call the
UploadConfigProperties() method. Alternatively, you could update some or all
of the configuration property values using data points, and then call
UploadConfigurationProperties() with the lcaConfigPropOptLoadValues,
lcaConfigPropOptSetDefaults and lcaConfigPropOptLoadUnknown options
set to upload all values not specifically set, and then set the defaults to the values
defined for this device. For optimal performances, you should set all configuration
property values in a single transaction. For more information on these tasks, see
Application-specific Configuration Data on page 125.

6. Bring the device online by setting the State property of the AppDevice object to
lcaStateCnfgOnline.

MyAppDevice.State = lcaStateCnfgOnline

7. You can now add the device to connections on your network, as your network design
requires. For instructions on creating and managing connections, see Connecting
Devices on page 137.

NOTE: Depending on the system management mode, the changes you make to each
device may or may not be propagated to the physical device on the network as you invoke
each method. For more information on this, see System Management Mode
Considerations on page 97.

Discovering When Devices are Detached or Replaced
Your LNS application can check if devices are still present in the network by periodically
attempting to communicate with them. One way to do so is to invoke the Test() method
on each AppDevice you need to check on. The Test() method verifies that the device is
present on the network, that it is properly configured, and that no other devices on the
network are using the network address assigned to the device.

If the Test() method returns lcaTestResultComm as the test status, it may indicate
that the device has been detached from the network. A device might be detected as
detached for several reasons, some of which will indicate the need for repair rather than
a removal or replacement. For example, the device might be detected as missing because
it has been detached from the network for physical maintenance, or because it has been
powered off. In this case, the best response from the application would be to prompt the
user to inspect the physical hardware. If the device has been physically removed from the

 LNS Programmer's Guide 96

system, and does not need to be replaced, the application should perform a logical device
removal to keep the LNS database synchronized with the physical removal, or it can
simply decommission the device if a replacement is expected in the future. For more
information on this, see Removing Devices on page 136.

The Test() method can return many possible values (e.g. lcaTestResultCommSnode,
lcaTestResultMismatchDomain, etc.) as the test status if the device being tested is
not properly configured. This could happen because of faulty device hardware design.
You can try to correct these errors by re-commissioning the device with the
Commission() or CommissionEx() methods. Consult the LNS Object Server Reference
help file for more information on the Test() method.

The Test() method is not the only way to determine when devices have been detached
from the network. You can use the BeginAttachmentEvent() method to subscribe your
application to the OnAttachment event. Once you register for this event, the LNS Object
Server will periodically ping the devices on your network, and fire the event if any are
missing. This is much more efficient than the Test() method, but not as
comprehensive. You can determine the interval at which each device is pinged by writing
to the AppDevice object’s PingClass property. You can set this property to any of the
following values:

lcaPingClassMobile Check detachment frequently (1 minute by
default).

lcaPingClassTemporary Check detachment less frequently (2 minutes
by default).

lcaPingClassStationary Check detachment occasionally (15 minutes by
default).

lcaPingClassPermanent Never check.

You can set the ping frequency for each of these ping classes by writing to the System
object's PingInterval property. The default ping rate is once every 15 minutes, unless
the System object’s InstallOptions property is set to lcaSharedMedia, in which case
pinging will be disabled.

When you discover that a physical device has been permanently removed from the
network, you should remove the AppDevice object associated with the device from the
LNS database. See Removing Devices on page 136 for information on removing devices.

Before doing so, you should note that device detachment might only signal that a repair
operation is under way. For example, if a device is discovered missing, but a new device
with the same program ID (or the same location field information) is added to the
network and attached to the same channel within the next 15 minutes, then you could
assume that the new device is a replacement for the removed device. In this case, you
need to update the LNS database to recognize the replacement. For instructions on this,
see Replacing Devices on page 131.

Note that when a router becomes unattached from the network, LNS will usually be
unable to communicate with any devices on the far side of the router, and devices on
channels connected by the router will be unable to communicate with each other. In this
case, LNS will generate an OnAttachmentEvent for the router, but not for each affected
device.

LNS Programmer's Guide 97

System Management Mode Considerations
The network installation scenarios described in this chapter make reference to the
system management mode (i.e. the MgmtMode property of the System object) at various
points. The system management mode determines whether or not changes made to the
LNS database that affect the configuration of devices on the network are propagated to
those devices as the changes are committed to the LNS database, or if the configuration
changes are propagated to the devices later. The system management mode affects all
client applications connected to a network, since the configuration of the network must
be managed consistently.

This section provides information you need to be aware of when using the MgmtMode
property. The section begins with a description of the two values you can assign to the
MgmtMode property: lcaMgmtModePropagateConfigUpdates and
lcaMgmtModeDeferConfigUpdates.

NOTE: New names for the system management mode settings have been provided in
Turbo Edition. The old values still exist in LNS for compatibility reasons, but the
documentation refers only to the new values. The new
lcaMgmtModeDeferConfigUpdates value maps to the old lcaOffNet value, and the
new lcaMgmtModePropagateConfigUpdates value maps to the old lcaOnNet value.

lcaMgmtModePropagateConfigUpdates
When the system management mode is set to lcaMgmtModePropagateConfigUpdates,
changes made to the database that affect the configuration of one or more physical
devices are propagated to those devices as the changes are committed to the database. If
the modification is performed as part of a transaction, the changes are propagated to the
devices during the call to CommitTransaction(). If the modification is not performed
as a part of a transaction, the changes are propagated as the property causing the change
is written to, or the method causing the change is invoked, and the LNS database is
updated.

Note that if LNS fails to update the devices, a network service warning in the range
4030-4089 (lcaErrNsWarningFirst- lcaErrNsWarningLast) will be returned. In
addition, any changes that affect the configuration of devices that have not yet been
commissioned are deferred until those devices are commissioned.

Note that the system management mode cannot be set to
lcaMgmtModePropagateConfigUpdates while in engineered mode.

lcaMgmtModeDeferConfigUpdates
When the system management mode is set to lcaMgmtModeDeferConfigUpdates,
changes made to the database that affect the configuration of devices on the network are
not propagated to the devices until the system management mode is set back to
lcaMgmtModePropagateConfigUpdates. If you commission or replace a device with
the Commission() or Replace() methods while the system management mode is set to
lcaMgmtModeDeferConfigUpdates, LNS will not propagate updates to the device until
the management mode is set to lcaMgmtModePropagateConfigUpdates.

 LNS Programmer's Guide 98

However, you can now use the ReplaceEx() method with the
lcaReplaceFlagPropagateUpdates option to replace devices while the system
management mode is still set to lcaMgmtModeDeferConfigUpdates. This may be
useful if there are configuration changes pending for a large number of devices, and you
want to replace a device without waiting for all of those changes to be applied. For more
information on replacing devices, see Replacing Devices on page 131.

A similar option is also provided for use with the new CommissionEx() method, which
you can use to recommission a device while the system management mode is set to
lcaMgmtModeDeferConfigUpdates. For more information on commissioning devices,
see Commissioning Devices on page 121.

When you open a network in engineered mode, it automatically sets the system
management mode to lcaMgmtModeDeferConfigUpdates. When you re-open that
network later, and are attached to the network, the System object’s MgmtMode property
will not be automatically reset. The application must explicitly set the system
management mode back to lcaMgmtModePropogateConfigUpdates.

It is possible to communicate with devices while the system management mode is set to
lcaMgmtModeDeferConfigUpdates, as long as the network was not opened in
engineered mode. However, some operations may not behave correctly in this case,
because a device’s configuration may not be synchronized with the LNS database. When
set to lcaMgmtModeDeferConfigUpdates, the system management mode also effects
certain operations explicitly. For more information on this, see Affects on Network
Management Methods and Properties on page 100.

Devices that have pending updates will have a commission status of pending (or failed, if
the last update attempt failed) when the system management mode is set to
lcaMgmtModeDeferConfigUpdates. A network service warning in the range 4030-
4089 (lcaErrNsWarningFirst- lcaErrNsWarningLast) will be returned to indicate
this, but the warning will not indicate which devices have not been updated. You can
check a device’s commission status by reading its CommissionStatus property.

Intended Usage of the System Management Mode
The system management mode should generally be set to
lcaMgmtModePropagateConfigUpdates, except when defining a network in
engineered mode. This will ensure that the configuration of the network is always
synchronized with the information stored in the LNS database. However, you may want
to change the system management mode to lcaMgmtModeDeferConfigUpdates before
making extensive changes to a network, in order to minimize the impact of these changes
on the operation of the system.

For example, suppose a new floor or wing of a building is being added to the network,
and this addition affects a number of connections with devices that are already installed
on the network. You may find it more efficient to set the system management mode to
lcaMgmtModeDeferConfigUpdates, make all the necessary changes in the LNS
database, and then set the system management mode back to
lcaMgmtModePropagateConfigUpdates mode when you are ready to propagate those
changes to the network. This allows you to choose a period during which an interruption
in network operation would be less intrusive to do so.

LNS Programmer's Guide 99

Changing the System Management Mode
The system management mode is global and affects all clients that are accessing the
system. When changing the system management mode, consider the following:

1. When changing from lcaMgmtModeDeferConfigUpdates to
lcaMgmtModePropagateConfigUpdates, the network will be updated with any
changes to the database that have been made by any application since the system
management mode was set to lcaMgmtModeDeferConfigUpdates. Presumably,
whoever set the management mode to lcaMgmtModeDeferConfigUpdates had a
reason to do so. Propagating device updates while major changes are incomplete
could cause the network to function improperly. As a result, you should make sure
that all major network management operations initiated on the network by your
application or any other are complete when you change the system management
mode from lcaMgmtModeDeferConfigUpdates to
lcaMgmtModePropagateConfigUpdates.

2. Changing from lcaMgmtModePropagateConfigUpdates to
lcaMgmtModeDeferConfigUpdates also affects a variety of network management
operations. The following sections describe the things you need to be aware of in this
case.

Tracking Device Updates
Changing the system management mode from lcaMgmtModeDeferConfigUpdates to
lcaMgmtModePropagateConfigUpdates can take a considerable amount of time, since
LNS may have to update a large number of devices with pending updates. If a device has
been commissioned, you can determine if it will need to be updated by reading its
commission status. If an AppDevice object’s CommissionStatus property is set to
lcaCommissionUpdatesPending or lcaCommissionUpdatesFailed, then that device
will be updated when the system management mode is changed from
lcaMgmtModeDeferConfigUpdates to lcaMgmtModePropagateConfigUpdates.

You can monitor the progress of the device updates caused by such a management mode
change by subscribing your application to the OnCommission event. Invoke the
BeginCommissionEvent() method on the System object to do so. As devices are
updated and their commission status changes, the event will be fired.

Tracking System Management Mode Changes
The system management mode is global and affects all clients that are accessing the
network. Because of this, you should consider registering your application for the
OnSystemMgmtModeChangeEvent. You can do so by invoking the
BeginSystemMgmtModeChangeEvent() method on the System object. Once your
application registers for this event, it will be fired each time the system management
mode changes. You should not change the system management mode after receiving this
event, as the client that changed the system management mode probably had a reason to
do so, but you can use the event to stay informed of system management mode changes.

 LNS Programmer's Guide 100

Affects on Network Management Methods and Properties
The following methods and properties are also affected by the system management mode.
These tasks are described in more detail in Chapter 6, Network Management: Defining,
Commissioning and Connecting Devices.

• If you use the Commission() or Replace() methods to commission or replace
an AppDevice or Router object while the system management mode is set to
lcaMgmtModeDeferConfigUpdates, LNS will not validate the device’s
program interface or channel. However, if you use the ReplaceEx() method
with the lcaReplaceFlagPropagateUpdates option set, or the
CommissionEx() method with the lcaCommissionFlagPropagateUpdates
option set, LNS will perform these validation tasks, regardless of the system
management mode.

• Background pinging is disabled while the system management mode is set to
lcaMgmtModeDeferConfigUpdates. This is so LNS will not generate
misleading ping reports while the LNS database and the physical network are
not synchronized.

• Background update retries for operations that failed while the system
management mode was set to lcaMgmtModePropgageConfigUpdates are
disabled while the system management mode is set to
lcaMgmtModeDeferConfigUpdates. Normally, you can enable background
update retries by setting the System object's UpdateInterval property to a
positive value.

In addition, if you invoke the RetryUpdates() method while the system
management mode is set to lcaMgmtModeDeferConfigUpdates, only failed
updates that occurred while the system management mode was set to
lcaMgmtModeDeferConfigUpdates will be retried. Failed updates that
occurred while the system management mode was set to
lcaMgmtModePropagateConfigUpdates will not be retried, unless the system
management mode is still set to (or has been restored to) the
lcaMgmtModePropagateConfigUpdates value when you call
RetryUpdates().

• If you create a Router with the AddEx() method while the system management
mode is set to lcaMgmtModeDeferConfigUpdates, you cannot specify the
lcaRouterFlagSplit value as the flags element.

• You cannot call the Load() or LoadEx() methods on an AppDevice while the
system management mode is set to lcaMgmtModeDeferConfigUpdates.

• You should be aware that in some cases, remote Full client applications cannot
open networks when the system management mode is set to
lcaMgmtModeDeferConfigUpdates. This may be the case if the Full client
application has not previously connected to the LNS Object Server, if the Full
client application has changed channels, or if changes have been made to the
database such that commissioning the Network Service Device may cause
inconsistencies in the configuration of physical devices on the network.

Use the AllowPropagateModeDuringRemoteOpen property to determine how
LNS will behave in this situation. Set the property to True if it is acceptable for
LNS to temporarily change the system management mode from

LNS Programmer's Guide 101

lcaMgmtModeDeferConfigUpdates to
lcaMgmtModePropagateConfigUpdates when opening a network from such a
client application in these situations. Otherwise, set this property to False.

You should note that when this property is set to True and the system
management mode is changed, all pending configuration updates will applied to
the physical devices on the network. This may result in unwanted changes being
propagated to the network. Once this has completed and the network has been
opened, the management mode will be restored to
lcaMgmtModeDeferConfigUpdates.

 LNS Programmer's Guide 102

LNS Programmer's Guide 103

Chapter 6 - Network

Management: Defining,
Commissioning and
Connecting Devices

This chapter provides additional details on how to perform
the network installation tasks introduced in Chapter 5. This
includes topics such as importing device interfaces, assigning
network addresses, loading device applications,
commissioning devices, synchronizing device configuration
properties, and creating connections between devices.

 LNS Programmer's Guide 104

Defining, Commissioning and Connecting Devices
Chapter 5 of this document lists the tasks you need to perform when using LNS to install
a LONWORKS network. This chapter provides extensive detail on how you should use LNS
services to perform each task introduced in Chapter 5. This includes the following
sections:

• Device Interfaces. Each LONWORKS device has a device interface. The device
interface represents the device’s functionality on the LONWORK network. In LNS,
distinct types of device interfaces are represented by DeviceTemplate objects.
Generally, you should specify the DeviceTemplate object a device should use
when you add the device to the LNS database. You can also import the interface
from the device into the LNS database later. The Device Interfaces section
provides instructions to follow when importing a device interface. It also
describes the components of a device interface, and the various considerations
you may need to make when choosing a device interface for a device.

• Defining and Commissioning Devices. Chapter 5 provides an overview of the
steps you need to perform when installing devices on a LONWORKS network. This
section describes each of these steps in detail. This includes the following topics:
address assignment, commissioning devices, loading device application images,
configuring devices, and setting devices online.

• Other Device Management Operations. This section describes network
management tasks you may need to perform after installing a network, such as
testing, removing, and replacing devices.

• Connecting Devices. This section provides an overview of how LNS manages
connections, and describes how you can create connections between devices on
your network.

Device Interfaces
Each LONWORKS device consists of a hardware platform, software that exercises that
hardware, and a device interface. The device interface, often referred to as the device’s
external interface, represents the functionality of the device on the LONWORK network.
This is the part of the device software that is exposed to the network, which allows other
devices and system integrators to benefit from the functionality and data supplied by the
device, and provide input to the device as needed.

The device interface consists of LonMark Functional Blocks, network variables, and
configuration properties. The device interface does not expose the internal algorithms of
a device. Instead, it only exposes the inputs and outputs of the algorithms.

Much of the device interface can be queried over the network by a network tool. The
device manufacturer determines the completeness of a queried interface. For example, a
device manufacturer could choose to embed network variable names in a device to ensure
that the queried network interface includes these names.

In order to make the complete device interface available to the system integrator, the
device interface should be documented in device interface files. There are several benefits
to using device interface files:

LNS Programmer's Guide 105

• A device interface file may include information that is not included in the device
itself, such as network variable names.

• A device interface file can be used even when the device cannot be accessed by
the network engineering tool, such as during the definition phase of an
engineered mode installation.

• Importing from a device interface file may be substantially faster than recovering
interface information from a device.

• Importing from a device interface file allows LNS to accurately set the default
values for network variable characteristics such as message service type and
priority. If you recover the interface from the device, LNS will use the current
values in the first device with that program as the defaults.

• Importing from a device interface file ensures that configuration property
definitions and default values for the device are available to LNS. After
recovering an interface from a device, it is necessary to upload the configuration
definitions from the device, after the device has been commissioned and the
device application is running. Default values can be set to the current values in
the device.

The primary device interface file type is a text file with a .XIF extension. Some platforms
convert this file to alternate formats for performance optimization. For example, LNS
uses a binary device interface file (.XFB extension), and a device interface object file
(.XFO extension). Both of these files are created from the data contained within the text
device interface file. The device interface files (.XIF and .XFB file extensions) are
supplied by the device manufacturer. The optimized interface file (.XFO extension) is
automatically created and maintained by LNS when the device interface files are
imported. Note that some manufacturers supply the .XFO file with the device, which
allows for more efficient importation of the device interface.

When you add a device to an LNS network database, you must create a
DeviceTemplate object within the database to represent the device’s interface. You can
create the DeviceTemplate object by querying the desired device’s external interface
over the LONWORKS network, or by reading the device interface files. To read a device
interface file into a DeviceTemplate object, follow these steps:

1. Initialize the LNS Object Server and open the network and system you plan to install
your devices on. These tasks are described in Chapter 4, Programming an LNS
Application.

2. Access the System object’s DeviceTemplates collection. You can access the
DeviceTemplates collection through the System object’s TemplateLibrary object.

Dim MyTemplateLibrary as LcaTemplateLibrary
Dim MyDeviceTemplates as LcaDeviceTemplates
Set MyTemplateLibrary = MySystem.TemplateLibrary
Set MyDeviceTemplates = MyTemplateLibrary.DeviceTemplates

3. Call the DeviceTemplates collection’s Add() method to create a new
DeviceTemplate object. The programType parameter you supply to the Add
method must be set to lcaProgramTypeXif.

Dim MyTemplate as LcaDeviceTemplate
Set MyTemplate = MyDeviceTemplates.Add (“T1”, lcaProgramTypeXif)

 LNS Programmer's Guide 106

4. Call the Import() method on the new DeviceTemplate object to import the
device’s external interface file. You will provide the location of the device interface
files in the xifPath parameter you supply to the method.

MyTemplate.Import (“C:\LonWorks\Import\Acme\Cooker.xif”)

Device interface files may reside in any location that can be reached through the file
system on the LNS Server PC. Thus, referencing a device interface file as
C:\LonWorks\Import\Acme\Cooker.xif refers to the cooker.xif interface file in
the LonWorks\Import\Acme folder on the C: drive of the LNS Server PC. Device
interface files may reside outside the LNS Server PC’s local storage, and can be
referred to via mapped network drives or fully qualified filenames. The device plug-in
software that comes with most LONWORKS devices should take care of installing the
device interface files into the correct locations, and may also create and initialize
DeviceTemplate objects as part of the plug-in application’s registration with the
network.

5. Once you have imported the external interface into the DeviceTemplate object,
LNS will automatically associate the DeviceTemplate with all devices that use the
imported external interface. LNS makes this determination by reading the program
ID values assigned to the devices, as described in the next section. You can also
specify the DeviceTemplate an AppDevice object should use when you create the
AppDevice object, as described later in this chapter.

Program IDs and DeviceTemplate Objects
A network can consist of multiple devices, some of which implement the same hardware,
software, and device interface. For example, a network could contain several hundred
light switches of the same make and model. Each of these light switches has a unique
Neuron ID, a unique network address (subnet/node ID, etc), and unique values for their
network variables and configuration properties. However, all the light switches share the
same device interface, and so they use the same DeviceTemplate in the LNS database.

The unique identifier of a device interface, and of the associated DeviceTemplate in the
LNS database, is the program ID. Every LonMark-compliant LONWORKS application
device is assigned a unique, 16 digit, hexadecimal standard program ID that uses the
following format:

FM:MM:MM:CC:CC:UU:TT:NN

Table 6.1 describes each part of the program ID. You can find out more about the
standard program ID fields in the LonMark Application-Layer Interoperability
Guidelines, which can be downloaded from the web at
http://www.lonmark.org/products/guides.htm.

http://www.lonmark.org/products/guides.htm

LNS Programmer's Guide 107

Table 6.1 Program ID Format

Program ID Segment Description

F This represents the format identifier.
This will be set to 8 for LonMark certified
interoperable devices,
9 for draft (not certified) interoperable
devices, or a value less than 8 for non-
interoperable devices. Note that the
LonMark Interoperability Association
has reserved format identifiers 0xA..0xF
for future use.

M:MM:MM A series of 5 hexadecimal digits
identifying the device manufacturer.
Manufacturer IDs are unique to the
manufacturer of certified interoperable
devices

CC:CC A series of 4 hexadecimal digits that
describe the class and primary function
of the device.

UU 2 hexadecimal digits describing the
device’s usage within its class. This is
also known as the device’s subclass.

TT 2 hexadecimal digits identifying the
physical channel type the device can be
used with.

NN 2 hexadecimal digits representing the
device model number.

Note: The first five fields described in Table 6.1 are allocated by the LonMark
Interoperability Association.

Device Resource Files
While the device interface file details all the network variables, configuration properties
and LonMark Functional Blocks initially available on a device, the interface does not
specify the internal structure of these elements.

A network variable defines an operational input or output for the device. Each network
variable is assigned a network variable type, which determines the structure, range, base
units, and scaling factors that the network variable uses.

A configuration property specifies a configuration option for a network variable, a
LonMark Functional Block, or the entire device. Each configuration property is assigned
a configuration property type, which defines the structure, range, base units, and scaling
factors that the configuration property uses.

Each network variable and configuration property is also assigned one or more format
specifications. Alternate format specifications can be supplied to provide unit conversion

 LNS Programmer's Guide 108

between different measurement systems, to provide alternate industry-specific
measurement units, or to provide locale-specific formatting for times, dates, or numeric
value separator characters.

A LonMark Functional Block groups network variables and configuration properties that
are related to a particular function of the device. LonMark Functional Blocks make a
device easier to install and configure. Each LonMark Functional Block is defined by a
functional profile that defines the network variables and configuration properties that
comprise the class of functional blocks. For example, a digital input device with four
switches could contain one LonMark Functional Block for each switch. For general
information on LonMark Functional Blocks, consult the LonMark Application-Layer
Interoperability Guidelines, which can be downloaded from LonMark website at
http://www.lonmark.org/products/guides.htm.

Functional profiles, network variable types, and configuration property types are defined
in device resource files, which are grouped into resource file sets. A complete resource file
set consists of a type file (.TYP extension), a functional profile definitions file (.FPT
extension), a format file (.FMT extension), and one or more language files (.ENG, .ENU
or other extensions).

You can create resource files with the Echelon NodeBuilder Resource Editor tool, which
is available for free download to all LonMark members from http://www.lonmark.org.
The LonMark Interoperability Association also provides a standard resource file set,
containing the most commonly used standard network variable types (SNVT),
configuration property types (SCPT) and functional profiles (SFPT). The most recent
standard resource file set is included with the LNS Server installation for Turbo Edition.

The device manufacturer typically provides all device resource files that are referred to
by the device (with the exception of the standard resource file set).

Each resource file set must be registered with the resource catalog. The catalog is a
repository of all resource file sets available on a given machine. Resource file sets must
be registered with the catalog that belongs to the LNS Server PC, and will typically need
to be registered on each PC running an LNS client application, unless it is a Lightweight
client application. The resource catalog is a file that is typically named LDRF.CAT, and
is located in the [Windows Drive]\LonWorks\Types folder by default.

The device plug-in software that ships with most LNS devices will typically install the
device resource files into an appropriate location and perform the registration with the
resource catalog at installation time. For manual registration, you can use the
LDRFCAT.EXE utility’s graphical user interface.

Scope Selectors
Each set of resource files must be associated with a particular program ID, a range of
program IDs, or with all program IDs to associate it with a network variable,
configuration property, or LonMarkObject on a device. The type of association is called
the scope of the resource file, and the scope is specified using a scope selector. The scope
selector for a resource file specifies what part or parts of a device’s program ID should be
used when selecting the resource file. The various scope selectors you can use with LNS
are described below.

http://www.lonmark.org/products/guides.htm#guidelines
http://www.lonmark.org/

LNS Programmer's Guide 109

Scope
Selector

Scope Enumeration Scope Definition

0 lcaResourceScopeStandard

Used for resource files containing
standard definitions for all devices
from any manufacturer. This
selector value can only be used for
resource files defined by the
LONMARK Interoperability
Association. The set of resource
files named STANDARD.<exten>
implements this scope.

1 lcaResourceScopeClass Used for resource files containing
standard definitions for all devices
of a specified device class from any
manufacturer. This selector value
can only be used for resource files
created by the LONMARK
Interoperability Association.

2 lcaResourceScopeSubclass

Used for resource files containing
standard definitions for all devices
of a specified device class and
subclass from any manufacturer.
This selector value can only be
used for resource files created by
the LONMARK Interoperability
Association.

3 lcaResourceScopeMfg Used for resource files containing
user definitions for all devices of a
specified manufacturer. This
selector value can be used by a
manufacturer for resource files
that apply to all of the
manufacturer’s devices.

4 lcaResourceScopeMfgClass Used for resource files containing
user definitions for all devices of a
specified manufacturer and device
class. This selector value can be
used by a manufacturer for
resource files that apply to all of
the manufacturer’s devices of a
specific device class.

 LNS Programmer's Guide 110

5 lcaResourceScopeMfgSubclass Used for resource files containing
user definitions for all devices of a
specified manufacturer, device
class, and device subclass. This
selector value can be used by a
manufacturer for resource files
that apply to all of the
manufacturer’s devices of a
specific device class and subclass.

6 lcaResourceScopeMfgModel Used for resource files containing
user definitions for all devices of a
specified manufacturer, device
class, device subclass, and model.
This selector value can be used by
a manufacturer for resource files
that apply to a particular version
of a single device type.

For example, if a manufacturer released a set of LonMark resource files with all type,
format, and language information for all its devices, this set of files would have a scope
selector of lcaResourceScopeMfg. If a resource file had a program ID of
80:00:01:00:00:00:00:00 and a scope selector of lcaResourceScopeMfg, then all
applications with 0:00:01 (Echelon) as the manufacturer section of their program ID
would use the types in this file.

The Bigger Picture
Figure 6.1 shows the device interface of the fictitious, energy-managed Cooker 2010
device produced by ACME Corporation. The device implements a standard functional
profile (SPFTnodeObject), and an ACME-defined functional profile (UFPTcooker).

SFPTnodeObject

nviRequest nvoStatus

SCPTlocation cpLocation

UFPTcooker

nviEnable nvoDemand

UCPTtimeSlice cpTimeSlice
SCPTdefault cpDefault

SNVT_obj_request SNVT_obj_status

UNVTenable UNVTdemand

Figure 6.1 Device Interface

LNS Programmer's Guide 111

SFPTnodeObject implements two network variables: nviRequest of type
SNVT_obj_request, and nvoStatus of type SNVT_obj_status. It also implements a single
configuration property: cpLocation of type SCPTlocation.

The UFPTcooker LonMark Functional Block implements two network variables:
nviEnable of type UNVTenable to enable the heaters, and nvoDemand of type
UNVTdemand to request a time-slice of energy to be allocated. In addition, it implements
two configuration properties: cpTimeSlice of the ACME-defined type UCPTtimeSlice, and
cpDefault of the standard SCPTdefault type.

All SNVT, SCPT, and SFPT types are defined in the standard resource file set, which is
automatically available on every LNS-based PC. No extra steps need to be taken to
enable those types.

However, the UNVT, UCPT, and UFPT types are defined in user-defined resource file
sets, which you must register with the device catalog on each PC that will access devices
implementing these types. You can perform many of the basic network management
functions without registering the related device resource files. However, monitoring,
control, and enhanced diagnostics features may require the resource files to be
registered. Figure 6.2 illustrates the device interface and device resource files on a single
PC, as related to the fictitious Cooker 2010 device.

SFPTnodeObject

nviRequest nvoStatus

SCPTlocation cpLocation

UFPTcooker

nviEnable nvoDemand

UCPTtimeSlice cpTimeSlice
SCPTdefault cpDefault

SNVT_obj_request SNVT_obj_status

UNVTenable UNVTdemand

acme.typ/.fpt/.fmt/
.enu

UFPTcooker,
UNVTenable,
UNVTdemand,
UCPTtimeSlice,
...

nviRequest,
nvoStatus,
nviEnable,
nvoDemand,
...

Cooker.xif/.xfb

+ Local Disk (C:)

+ LonWorks

+ Import

+ ACME

+ Types

+ User

+ Acme

standard.typ/.fpt/.fmt/
.enu

SFPTnodeObj...,
SNVT_obj_...,
SCPTlocation,
SCPTdefault,
...

LDRF.cat

acme.typ/.fpt/.fmt/
.enu

UFPTcooker,
UNVTenable,
UNVTdemand,
UCPTtimeSlice,
...

+ Local Disk (C:)

+ LonWorks

+ Types

+ User

+ Acme

standard.typ/.fpt/.fmt/
.enu

SFPTnodeObj...,
SNVT_obj_...,
SCPTlocation,
SCPTdefault,
...

LDRF.cat

Device Implementation Support files on an LNS Server PC Support files on an LNS Remote Client PC

Figure 6.2 Device Interface and Resource Files on a PC

 LNS Programmer's Guide 112

Maintaining Device Interfaces With LNS
The recommended way to manage your device interface and resource file sets is to
register all required resource files with the resource catalog, and then to create your
DeviceTemplate objects by importing the device interface files. Most LNS plug-in
applications perform these tasks automatically.

LNS Turbo Edition provides a set of tools that may be used to re-synchronize resources to
interfaces, or interfaces to devices, when necessary. You can call the
ResyncToResources() method on a DeviceTemplate to resynchronize the
DeviceTemplate with the device resource files. This may be necessary if a device’s
external interface was imported when the resource files for that device were not available
in the resource file catalog, or if the device resource files have been updated or modified
since the device’s external interface was imported. Note that resource file sets should be
modified carefully in order to maintain compatibility with existing devices.

You can also call the ResyncToTemplate() method on an AppDevice to re-synchronize
the device with its DeviceTemplate. This may be necessary after re-importing the
device interface file with the Import() method, or after using the
ResyncToResources() method to resynchronize the DeviceTemplate with the device
resource files.

See the LNS Object Server Reference help file for a complete list of the properties each
DeviceTemplate object contains, and descriptions of how they might be useful to you.

As stated earlier, each device interface consists of network variables, configuration
properties and LonMark Functional Blocks. In LNS, network variables, configuration
properties and LonMark Functional Blocks are represented by NetworkVariable,
ConfigProperty, and LonMarkObject objects. The device interface as a whole is
represented by an Interface object, which can be accessed through the Interface
property of the AppDevice object associated with the device. You can use the network
variables and configuration properties on each device to monitor and control the device
on the network. For information on using LNS to monitor and control a network, see
Chapter 9, Monitor and Control.

NOTE: In some cases, there may be need to modify the functionality provided by a device
interface. For example, controller devices may be used to control other devices. As a
result, the number of components required for that device’s interface is often an attribute
of the network configuration (i.e. how many devices it is controlling), rather than of the
device’s hardware. Ideally, the resources on these controllers could be allocated
dynamically, in order to fit the changing requirements of a given network as devices are
added to it. As a result, LNS features support for dynamic interfaces. For more
information on this, see Using Dynamic Device Interfaces on page 178.

Note that application image files (.NXE, or .APB extensions) that are used for device
loading are also typically stored in the server PC’s Import\ folder, and must be
referenced using a server-centric path similar to the device interface file path discussed
in this section.

LNS Programmer's Guide 113

Defining and Commissioning Devices
This section describes the steps you need to take when installing and configuring devices
on a network with the network installation scenarios described in Chapter 5 in detail.
This includes the following sections:

• Creating AppDevice Objects. One of the first steps you need to take when using
LNS to define and commission a device is to create an AppDevice object to
represent the device in the LNS database. This section describes how to do so.

• Neuron ID Assignment. LNS use a device’s Neuron ID to associate an AppDevice
object with a physical device on the network. In some cases, you may already
know the Neuron ID a device uses, and can set the property immediately. In
other cases, you might not. This section describes the different ways you can use
LNS to determine a device’s Neuron ID, and how to store the Neuron ID in the
LNS database.

• Loading Device Application Images. Before commissioning a device, you may
need to load the device’s application image. This section describes how to do so.

• Commissioning Devices. When you commission a device, LNS uses the device’s
Neuron ID to associate the AppDevice object in the LNS database with the
physical device on the network. There are many considerations you need to make
when commissioning devices. This section describes those considerations, and
describes when you should use the CommissionEx() method, which has been
added to LNS for Turbo Edition.

• Configuring Devices. Each device contains configuration properties that are
defined by the device’s interface. It is important to make sure that the
configuration property information stored in the LNS database matches the
configuration property information stored in the physical device on the network.
You can use the DownloadConfigProperties() and
UploadConfigProperties() methods to do so. This section describes the
considerations you should make when using those methods.

• Setting Devices Online. This section describes how to set a device online, and
provides guidelines you should be aware of when using LNS to change the state
of a device.

• Generally, you can add a device to connections on your network as soon as you
have created an AppDevice object for the device in the LNS database. However,
when using an add-hoc installation scenario in which either the device template
or channel is not specified when creating the device, device connections cannot be
created until the device has been commissioned. For more information on
connecting devices, see Connecting Devices on page 137.

Creating AppDevice Objects
One of the first steps you need to take when using LNS to define and commission a
device is to create an AppDevice object to represent the device in the LNS database. To
create an AppDevice, follow these steps:

1. Select or create the Subsystem object that will contain the new AppDevice. As
described in The LNS Programming Model on page 29, each Subsystem represents a

 LNS Programmer's Guide 114

physical or logical segment of your network, and each Subsystem has its own
AppDevices and Routers collections. These collections contain the application devices
and routers installed on that Subsystem. You can select a subsystem that already exists
using the Item property of your Subsystems collection, or you can create a new
subsystem with the Add() method.

Set MySubsystems = MySystem.Subsystems
Set MySubsystem = MySubsystems.Item("FireSubsystem")

OR:

Set MySubsystems = MySystem.Subsystems
Set MySubsystem = MySubsystems.Add("FireSubsystem")

NOTE: You cannot explicitly add items to AppDevices collections that are contained in
the ALL or Discovered subsystems, as these read-only collections are maintained by
LNS.

2. Fetch the AppDevices collection from the selected Subsystem:

Set MyAppDevices = MySubsystem.AppDevices

3. Use the Add() method to add a new AppDevice to the AppDevices collection acquired
in step 2.

Set NewAppDevice = MyAppDevices.Add("SmokeDetector", _
 MyDeviceTemplate, MyChannel, MySubnet)

The Add() method takes four parameters: the device name, a DeviceTemplate
object, a Channel object, and a Subnet object. The device name is required, and the
Channel and DeviceTemplate objects should be specified whenever possible. You
must specify a DeviceTemplate to create planned network variable connections for
the device in the engineered installation scenario.

If you do not specify the device template and channel, the device template will be
assigned (and recovered from the device if necessary) when the device is
commissioned. In this case, the device’s interface will be unavailable until the device
has been commissioned. Echelon recommends that you specify the template and
channel during device creation whenever possible.

If you do not specify the device template, any dynamic network variables on the
device’s main interface will be uploaded into the LNS database when the device is
commissioned, which may not be desirable. However, you can use the
MoveToInterface() method to move these dynamic network variables to a custom
interface, and then delete them, if desired. For more information on the
MoveToInterface() method, see Using Dynamic Device Interfaces on page 178.

For more information on device templates, see the Device Interfaces section earlier in
this chapter. For more information on channel and subnet allocation, see Managing
Networks with Multiple Channels on page 169.

Echelon recommends that you do not assign a subnet when creating AppDevice
objects, as LNS will automatically assign the best subnet to the new device, based on
the network topology and resource requirements.

LNS Programmer's Guide 115

4. You should note that devices can be installed in multiple subsystems. You can use
the AddReference() method to create a reference to a device that has already been
added to another subsystem.

Set MyAppDevice = OtherSubsystemAppDevices.Item(“Device 1”)
Set MyAppDevices = MySubsystem.AppDevices
MyAppDevices.AddReference (MyAppDevice)

If a device has been added to AppDevices collections in multiple subsystems in this
fashion, you will need to call the Remove() or RemoveEx() method on each
collection containing the device when you want to remove the device from the
network. This does not apply to the ALL or Discovered subsystems. You can use the
AppDevice object’s Subsystems property to see which subsystems the AppDevice
belongs to. For more information on removing devices, see Removing Devices on page
136.

Neuron ID Assignment
Every LONWORKS device is assigned a unique Neuron ID when it is manufactured. The
Neuron ID differentiates the device from all the other LONWORKS devices in the world,
and LNS uses Neuron IDs to uniquely identify the devices on a network. There are three
ways to acquire a device’s Neuron ID, and write it to the LNS database:

• Service Pin

• Find and Wink

• Manual Entry

Service Pin
Each device has a service pin. When a device’s service pin is activated, the device sends a
broadcast message containing its Neuron ID and program ID. The method used to
activate the service pin varies from device to device. Examples of mechanical methods
include activating via a push button, or using a magnetic reed switch. A Neuron C
function allows the service pin to be placed under software control as long as the device’s
application code is running. For example, a device can send a service pin message when
it is moved, or when a predefined series of I/O events occur.

You can program your LNS application to receive service pin messages from devices on your
network, and determine the Neuron IDs assigned to those devices from those messages. To
do so, follow these steps:

1. Invoke the System object’s BeginServicePinEvent() method to register your
application for service pin events.

MySystem.BeginServicePinEvent()

2. When the LNS Object Server receives a service pin message, the OnSystemServicePin
event will be fired. The parameters provided with this event include the Neuron ID,
program ID, location, channel handle, network handle, and system handle for the device
whose service pin was activated.

3. Assign the Neuron ID acquired in step 2 to the AppDevice object you created for the
device whose service pin was activated. You can do so by writing to the AppDevice

 LNS Programmer's Guide 116

object’s NeuronId property.

MyAppDevice.NeuronId = AcquiredNeuronId

4. Invoke the EndServicePinEvent() method to cancel your application’s subscription to
service pin events.

MySystem.EndServicePinEvent()

Confirmed Service Pin Protocol
The confirmed service pin protocol includes additional steps you can take to ensure that
the service pin event your application receives is from the expected device on the
network. You should use the confirmed service pin protocol on systems using shared
media to ensure that you have not received a service pin message from a device that
belongs to another system. You should also consider using the confirmed service pin
protocol on systems using private media if multiple technicians are installing different
devices simultaneously. For more information on shared media, see Using Shared Media
on page 167.

To use the confirmed service pin protocol to determine a device’s neuron ID, follow these
steps:

1. Acquire the device’s Neuron ID using the OnSystemServicePin event, and assign the
Neuron ID to the NeuronId property of the AppDevice object you have created for the
device. Before you write to the NeuronId property, you should read the property and
preserve a copy of the previous value. These tasks are described in steps 1-3 of the
procedure in the previous section.

2. To confirm that you have found the correct device, wink the device by invoking the
Wink() method.

MyAppDevice.Wink()

NOTE: When using the confirmed service pin protocol on a router, you should use the
Reset() method for this step.

3. When a device receives a wink command, it responds in a way that can be easily detected
by someone at the device’s location. For example, lights can blink, alarms can ring, and
displays can flash. Once the device is winked, someone on-site should press the service
pin a second time, to acknowledge that the correct device was winked.

NOTE: When using the confirmed service pin protocol on a router, the router will reset
and indicate this via its reset LED.

4. The OnSystemServicePin event will be fired a second time. If the neuronId element
returned by the event matches the one acquired in step 1, then you can assume that you
have located the correct device. Otherwise, restore the AppDevice object’s NeuronId
property to the original value preserved in step 1.

5. Invoke the EndServicePinEvent() method to cancel your application’s subscription to
service pin events.

MySystem.EndServicePinEvent()

LNS Programmer's Guide 117

Find and Wink
When it is impractical to activate a device’s service pin (for example, if the device is
behind a wall or in a false ceiling), you can use the find and wink method to determine its
Neuron ID. The LNS Object Server periodically looks for new devices that have been
attached to the network, and places them in the Discovered.Uninstalled subsystem.
When LNS discovers a device and places it in this subsystem, it sets the device’s Neuron
ID automatically.

To qualify as a "new" device, the device must not be configured. By default, the LNS
Object Server searches for new devices once every three minutes. You can change the
discovery interval by writing to the System object’s DiscoveryInterval property. You
can set the discovery interval to any value between 0 and 65,535 seconds. Set the
property to the value 0 to turn off the background discovery process.

Follow these steps to determine which devices the LNS Object Server has discovered, and
determine the Neuron ID of those devices:

1. Acquire the predefined Discovered.Uninstalled subsystem from the
system’s Subsystems collection:
Dim MySubsystems as LcaSubystems
Dim MySubsystem as LcaSubsystem

Set MySubsystems = MySystem.Subsystems
Set MySubsystem = MySubsystems.Item("Discovered.Uninstalled")

Note the use of the combined subsystem path in this example.
Subsystem objects can be retrieved in a single step, using a dot-
separated syntax as shown in this example. In this example, the retrieved
Subsystem object has the name “Uninstalled” and belongs to the
“Discovered” subsystem. Whenever a Subsystem object’s path is known
within the subsystem hierarchy, it is more efficient to use the subsystem
path to retrieve it, as opposed to using several distinct steps to retrieve
one Subsystem per hierarchy level.

2. Get the AppDevices collection from this subsystem and iterate through
the devices by index, using the Item property. To find the target,
examine the properties of each AppDevice in the collection. For example,
the program ID, channel ID, and location can be used to find the
appropriate devices.

The location field is a 6-byte field in the Neuron Chip used for storing
installation-related information. This property is intended for use in
situations where the device’s physical location may be read from its I/O
pins or programmed into the device prior to installation. For example, if a
device is installed in a slot in a card cage, it can read the slot number
from the edge connector.
Set MyAppDevices = MySubsystem.AppDevices
Counter = 1
MySystem.BeginTransaction()
MaxDevices = MyAppDevices.Count
While not DeviceFound and Counter <= MaxDevices
 Set MyAppDevice = MyAppDevices.Item(Counter)
 DeviceFound = AppDevice.Location = DesiredLocation
 Counter = Counter + 1
End While

 LNS Programmer's Guide 118

MySystem.CommitTransaction()

3. To confirm that you have found the correct device, wink the device by
invoking the Wink() method. The device should be programmed to
respond in a way that can be easily detected by the person installing the
device. For example, lights can blink, alarms can ring, and displays can
flash. The person performing the installation can then identify the
physical application device responding to a particular wink message as
the one currently being installed.
MyAppDevice.Wink()

4. Continue performing steps 2 and 3 until the correct device has been
found. Then, commission the device, and add it to connections as your
network design requires.

5. Note that in a fashion similar to the confirmed service pin protocol
described earlier, a local technician could confirm the correct device
performed the wink action by activating the device’s service pin. Your
application could obtain that service pin message via the
OnServicePinEvent event, and then compare the originator device’s
Neuron ID with the value stored in the NeuronId property of the
CurrentDevice returned by the event. If both match, your application
could assume that the detected device is the desired one.

In a fully automated approach, your application could use other methods
to confirm the device’s identity. For example, the application could
compare the device’s program ID with the expected value, it could query
the device’s Location property, or inspect the channel it is attached to
by reading the AppDevice object’s Channel property.

The LNS Object Server can also find configured devices. An LNS application may invoke
DiscoverDevices() method on a system to discover configured devices that have not
been added to the LNS database. When you call DiscoverDevices(), you must specify
the DomainId and backgroundReg parameters. These specify the domain on which
devices will be discovered, and whether registration will take place as a background or
foreground task. For more information, see the help page for the DiscoverDevices()
method in the LNS Object Server Reference help file.

NOTE: You should not use find and wink on systems that use shared media. Instead,
you should use the confirmed service pin protocol described earlier in this chapter, or you
should manually enter the Neuron ID, as described in the next section.

Manual Entry
In many cases, the Neuron ID is manually supplied to the LNS application. Most
LONWORKS devices are shipped with the Neuron ID printed on the housing or packaging.
The Neuron ID for each device is also frequently supplied on stickers that can be peeled
off during physical installation and attached to a device list or floor plan, allowing for the
installer to scan these Neuron IDs at a later stage. Alternatively, the installer could be
required to manually enter the Neuron ID for each device. Manually entering the data
could be as easy as running a bar code reader over the coded location on the plan
(representing the device’s physical location), followed by running the reader over the bar
code containing the Neuron ID of the device at that location. It is also possible to type in
the Neuron ID as a series of 6 hexadecimal digits.

LNS Programmer's Guide 119

If a router is being installed while not connected to the network (e.g. when using the
engineered mode installation described in Chapter 5), the Neuron IDs of the near and far
sides of the router must be entered. You can do so by writing to the NeuronId property of
the RouterSide object accessed through the NearSide and FarSide properties of the
Router object. When installing a router while attached to the network, only the Neuron
ID for the near side is required, and LNS will fetch the far side’s Neuron ID from the
device automatically. Note that the service pin message received from a router always
provides the near side Neuron ID.

Loading Device Application Images
Neuron Chip-based devices are usually programmed with an application when they are
manufactured. Although loading application images is normally not required for
production-level devices, this is a common operation during device development,
manufacture, and test. For production-level devices, application images may need to be
reloaded into previously-installed devices to repair a damaged application, or to upgrade
a device's capabilities.

To load a device’s application image, the device’s application must be accessible to the
LNS Server PC in application binary format (.APB file). Note that you cannot load a
device’s application image while in engineered mode, and the system management mode
must be set lcaMgmtModePropagateConfigUpdates when you load an application
image.

To load an application image into a device, follow these steps:

1. Set the path to the application image file on the LNS Server PC by writing to the
AppDevice object’s AppImagePath property.

MyAppDevice.AppImagePath = "c:\DeviceApps\Smkdtctr.apb"

Application image files can reside in any location that can be reached through the file
system on the LNS Server PC. Thus, setting the AppImagePath property to
C:\LonWorks\Import\Acme\Cooker.apb will refer to the cooker.apb file in the
LonWorks\Import\Acme folder on the C: drive of the LNS Server PC. Application image
files can also reside outside the LNS Server PC’s local storage and referred to via mapped
network drives or fully qualified filenames. The device plug-in software that comes with
most LONWORKS devices should install the application image files into the correct
locations.

2. Call the Load() method on the AppDevice. If the system image version (the Neuron
Chip firmware) of the target device does not match that of the application image being
loaded, the operation will fail and an exception will be generated. However, some devices
support use of the LoadEx() method, which you can use to automatically upgrade the
system image version if it is incompatible with the application image being loaded. For
more information on the Load() and LoadEx() methods, see the LNS Object Server
Reference help file.

MyAppDevice.LoadEx(lcaLoadOptionsNone)

Note: If the device’s DeviceTemplate has already been associated with a particular
program, loading an application image that uses a different program ID or external
interface into the device will cause inconsistencies. If you attempt to load an
application image with a different program ID, the device will be left in the
unconfigured state after the load, and the NS#38 lcaErrNsProgramidMismatch

 LNS Programmer's Guide 120

exception will be thrown. In this case, the LNS Object Server will contain a record of
the device’s configuration, including the connections in which the old device was a
member. To resolve the inconsistency, you must upgrade the device and then
recommission it, as described in the Upgrading Devices section on page 133. Then,
follow the steps above.

Echelon recommends that you upgrade a device before loading its new application
image whenever possible. If the loaded application has the same program ID but
implements a different interface, the device will also be left in an unconfigured state.
However, since LNS does not support devices with the same program ID and
different interfaces, this inconsistency cannot be resolved without either loading a
new application or removing the device.

Post-Load State
The state of the device at the end of the application loading process depends on whether
the device had been commissioned before the process began, and on the application
image that was loaded:

• If the device had not been commissioned prior to the application load, the LNS
Object Server will leave the device in the unconfigured state.

• If the device had been previously commissioned, and the device’s old application
and its new application have the same program ID and the same external
interface, the LNS Object Server will restore the device’s network image (address
and connection information) from the database.

• If the device had been previously commissioned, and the device’s old application
and its new application have a different program ID or a different external
interface, the LNS Object Server will leave the device in the unconfigured state.
If the program ID differs, the LNS application can use the Upgrade() method to
upgrade the device to use the device template corresponding to the newly loaded
application image, and then use the Commission() method to restore as much of
the device’s configuration as possible. These features are described in more detail
later in the chapter.

• If the device had been previously commissioned, and the device's old application
image and its new application image have the same program ID but a different
external interface, the LNS Object Server will leave the device in the
unconfigured state, and the NS:#59 lcaErrNsProgramIntfMismatch
exception will be thrown. Per LonMark guidelines, LNS requires that each
program ID be associated with only one external interface. This means that all
components and properties of each external interface using a given program ID
must be identical. However, LNS may not detect all violations of this rule, as it
would be very time consuming to validate this on every commission or after every
application download.

• An application loading session may be canceled by calling the system’s
CancelTransaction() method from within an OnSystemNssIdle event
handler, as described in Using the OnSystemNssIdleEvent on page 314. If the
load is canceled, the device will be left in the applicationless state. In this case,
the previous device application must be reloaded to restore the device.

LNS Programmer's Guide 121

Reloading a Device's Application
You should be aware that in some cases, reloading a device’s application may cause the
configuration properties on the device to be set to their original, default values. When
reloading a device’s application, Echelon recommends that you follow this procedure to
ensure that the configuration properties in the device are restored to match those in the
database in the most efficient manner:

1. Call DownloadConfigProperties() on the AppDevice. Use the
lcaConfigPropOptClearUpdatePending value as the
downloadOptions element.

MyDevice.DownloadConfigProperties(lcaConfigPropOptClearUpdatePending)

2. Call Load() or LoadEx() to reload the device application, as described
previously.

MyDevice.LoadEx(0)

3. Call DownloadConfigProperties() again. This time, specify the
lcaConfigPropOptLoadValues option as the downloadOptions
element. This will load the configuration properties stored in the LNS
database for the device back into the device.

MyDevice.DownloadConfigProperties(lcaConfigPropOptLoadValues)

Commissioning Devices
After you have assigned a device its Neuron ID (and loaded its application image if
necessary), you can enable it for communication with other devices on the network and
load its network image by invoking the Commission() or CommissionEx() methods.
This does the following:

• Gives the device a network (subnet/node) address in the system’s domain
if no DeviceTemplate or Channel were specified when the AppDevice
was created. If a DeviceTemplate and Channel were specified, the
network address was assigned at that time.

• Extracts the external interface from the device, if no DeviceTemplate
object was specified when the AppDevice object was created. If a
DeviceTemplate object was specified, the commission process will
validate the DeviceTemplate object against the device interface on the
physical device.

• Sets all of the unbound address table and network variable configuration
table entries in the device to the unbound state.

• Downloads connection information for the device, if the device was added
to connections before it was commissioned.

• Sets the device’s non-group receive timer to a default value that is based
on the network topology.

• Sets or determines the device’s channel.

• Sets the device’s state to lcaStateCnfgOffline.

 LNS Programmer's Guide 122

Using the Commission and Commission Ex Methods
The CommissionEx() method has been added to LNS for Turbo Edition. There is no
functional difference between the CommissionEx() and Commission() methods, other
than their behavior while the system management mode is set to
lcaMgmtModeDeferConfigUpdates.

If you invoke the Commission() method while the system management mode is set to
lcaMgmtModeDeferConfigUpdates, the physical device will not updated with the
configuration changes caused by the commission process until the system management
mode is set back to lcaMgmtModePropagateConfigUpdates. However, the
CommissionEx() method allows you to specify options that will cause the physical
devices to be updated if you are recommissioning a device while the system management
mode is set to lcaMgmtModeDeferConfigUpdates.

This is useful if there are a large number of configuration changes pending, and you need
to recommission a device without waiting for the rest of the changes to propagate to the
network. Recommissioning a device while the system management mode is set to
lcaMgmtModeDeferConfigUpdates updates the device with the configuration defined
for the device when the system management mode was last set to
lcaMgmtModeDeferConfigUpdates. This ensures that the network is configuration is
consistent. It is not possible to propagate updates to a device while the while the system
management mode is set to lcaMgmtModeDeferConfigUpdates if the device has never
been commissioned before, as this may introduce network inconsistencies.

When using either method to commission a device while the system management mode is
set to lcaMgmtModePropagateConfigUpdates, LNS will validate that the program
ID, channel and interface assigned to the device are valid. If you invoke the
Commission() method while the system management mode is set to
lcaMgmtModeDeferConfigUpdates, LNS will not perform these validation steps. In
contrast, the CommissionEx() method allows you to specify options to perform the
validation while the system management mode is set to
lcaMgmtModeDeferConfigUpdates.

NOTE: As of LNS Turbo Edition, each DeviceTemplate object includes a
DeviceValidation property. The DeviceValidation property determines what
validation steps LNS will perform when you commission devices using that
DeviceTemplate. For more information on this, see the next section, Device Validation
Options.

Echelon recommends that you perform initial commissions only while the system
management mode is lcaMgmtModePropagateConfigUpdates. This allows LNS to
validate the device’s interface and channel, and to control the commissioning process.
Suppose many devices have been defined and commissioned while the system
management mode is set to lcaMgmtModeDeferConfigUpdates. When the system
management mode is set back to lcaMgmtModePropagateConfigUpdates, LNS will
immediately start commissioning all of these devices. This process may take a long time,
and the LNS application will be “locked out” during this process.

See the LNS Object Server Reference help file for details on the syntax required when you
call Commission() and CommissionEx().

LNS Programmer's Guide 123

Device Validation Options
When you commission a device, LNS will validate that the physical device has the same
external interface and program ID assigned to the AppDevice object in the LNS
database. It will also validate that the physical device is on the channel assigned to the
AppDevice object. If the physical device is not using the external interface or program
ID assigned to it in the database, the commission will fail, and either the NS#59
lcaErrNsProgramIntfMismatch or the NS#38 lcaErrNsProgramidMismatch
exceptions will be thrown. If the physical device is not on the channel assigned to it in
the database, the commission will fail and the NS#72 lcaErrNsWrongChannel
exception will be thrown.

As of LNS Turbo Edition, each DeviceTemplate object includes a DeviceValidation
property. This determines what validation steps LNS will perform when you commission
devices that use the DeviceTemplate. This will be useful if you are commissioning a
large number of devices that are on a slow channel, and you are confident that the
devices contain the correct program information and are installed on the correct channel.
If you want to reduce the time it takes to commission the device in this situation, you can
set the DeviceValidation property to any of the following values:

• lcaDeviceValidationNoChannelValidation: Do not validate the device’s
channel.

• lcaDeviceValidationNoProgramInterfaceValidation: Do not validate the
device’s program interface.

• lcaDeviceValidationNoProgramIDValidataion: Do not validate the
device’s program ID.

See the LNS Object Server Reference help file for more information on these options. The
default is for LNS to perform all validation steps. If you modify this property from the
default, you should be sure that the Channel and ProgramId properties of all
AppDevice objects using the device template have valid settings before commissioning
those devices. Failure to do so may cause improper configuration of the device, and may
make it impossible to communicate with the device.

Device Configuration Considerations
Before commissioning a device, you should make sure that the configuration property
information contained in the LNS database for the device is complete, and you should
download the configuration property values in the LNS database into the physical device.

To do so, call DownloadConfigProperties() on the AppDevice before you commission
it. Use the lcaConfigPropOptLoadValues and lcaConfigPropOptLoadUnknown
download options when you call DownloadConfigProperties(). This will set any
unknown configuration properties in the AppDevice object in the LNS database to their
default values, and then set all configuration property information in the physical device
on the network to match the information stored in the LNS database. As a result, when
the device is commissioned, it will contain current values for any configuration properties
that have been explicitly set, and default values for any configuration properties that
were unknown before the download.

Note that by using DownloadConfigProperties() as described above, you will
preserve the information stored in the LNS database for the AppDevice, by changing the

 LNS Programmer's Guide 124

configuration property information stored in the physical device. In some cases, you may
want to do the opposite. You may want to change the configuration property information
stored in the LNS database to match the information stored in the physical device on the
network.

This can usually be accomplished by calling UploadConfigProperties() on the
AppDevice, but you cannot use this method on a device until it has been commissioned.
If you are commissioning a device for the first time and want to preserve the
configuration property information stored in the physical device, the solution is to call
DownloadConfigProperties() with the lcaConfigPropOptSetUnknown value as
the download option before you commission the device. All configuration property
information in the database will be set to unknown status, but the configuration property
in the physical device will not be affected. Once the device has been commissioned, you
can call UploadConfigProperties() with the lcaConfigPropOptLoadValues value
as the upload option to set the configuration property information in the database to
match the configuration property information stored in the physical device.

Echelon recommends that you use the same explicit transaction to call the
DownloadConfigProperties() method, and the Commission() or CommissionEx()
methods. Otherwise, this procedure will take longer and consume more network
bandwidth than when performed in separate transactions.

For more information on transactions, see Using Transactions and Sessions on page 64.
For more information on how you can use the DownloadConfigProperties() and
UploadConfigProperties() methods, see Configuring Devices on page 124.

LNS Licensing Considerations
All applications using the standard LNS Device Credit licensing model will require one
LNS Device Credit for each device being commissioned. Therefore, when commissioning
devices, you need to make sure that you have a sufficient number of LNS Device Credits
available. For more information on this, see Chapter 13, LNS Licensing.

Configuring Devices
Application devices have many different types of configuration information. This data
can be roughly organized into two classes, generic configuration data and application
configuration data. This section defines these two classes of data, and describes how you
should manage each device’s configuration.

Generic Configuration Data
Some configuration data is generic to all LONWORKS devices. This includes information
required by the network protocol, as well as device properties that are present on all
standard application devices. The LNS Object Server reads this configuration data
automatically during installation, and exposes it through the properties of the
AppDevice object. Two examples are the Priority and Location properties.

You can use the Priority property to assign a device a specific priority slot. Set the
property to 255 to cause the LNS Object Server to assign the device the next available
priority slot. After a device’s priority slot is modified, the LNS Object Server

LNS Programmer's Guide 125

automatically resets the device to make the change take effect. A value of 0 indicates the
device uses a standard, non-priority communication slot, which most typical devices use.

You can use the Location property to set a device’s location field. The location field is a
6-byte field in the Neuron Chip used for storing installation-related information. To
promote language independence, text should not be stored in this field. Instead, it should
contain an index or code that can be mapped to text at the user interface. For example, in
a building control system, the floor and room number could be stored in the location field.

The AppDevice object contains a variety of other properties containing useful
information, such as the device’s program ID, authentication setting, configuration state,
and channel. When installing a device, you should set these properties, or check that
they are set to proper values. For a complete list and descriptions of the properties of the
AppDevice object, see the LNS Object Server Reference help file.

NOTE: The LonMark Interoperability Association recommends that you set the
SCPTlocation configuration property on each device to match the subsystem path of the
associated AppDevice object. This will provide optimum support for network recovery.
For more information on this, see Application-Level Recovery on page 260.

Application-specific Configuration Data
Application configuration data is defined using configuration properties. Configuration
properties can be implemented as configuration network variables or configuration
parameters. Any device can use configuration network variables. Devices that comply
with the LonMark Application Layer Interoperability Guidelines, version 3.0 or later, can
use configuration parameters. Configuration parameters are stored in files on the device,
and are accessed using the LonTalk file transfer protocol or direct memory read/write.
The LNS Object Server automatically determines and uses the best transfer option.
Configuration properties may be properties of the device, a LonMarkObject object, or a
network variable.

Configuration property definitions are contained in device external interface files. If a
DeviceTemplate was created using an external interface file, then configuration
property definitions are defined for the DeviceTemplate, and for every device using
that template. The configuration property defaults are also defined for the
DeviceTemplate, but the configuration properties of the devices using that template
are not automatically set to the default values.

If a DeviceTemplate was recovered from a device, the configuration properties for that
template will initially be undefined. The ConfigPropertiesAvaliable property will
be set to False in this case. You can load the configuration property definitions for the
associated device template from the physical device using the
UploadConfigProperties()method, as described in the next section.

Downloading and Uploading Configuration Properties
You can use the UploadConfigProperties() method to upload configuration property
values from a physical device on the network into the associated AppDevice object in the
LNS database. You can use the DownloadConfigProperties() method to download
configuration property values stored for the AppDevice object in the LNS database to
the physical device that the object represents.

 LNS Programmer's Guide 126

The configuration property data for a device is not automatically added to the LNS
database when the device is added to the LNS database and commissioned. Therefore,
your LNS application should ensure that the configuration property information stored
in the LNS database for a device is synchronized with the configuration information
stored in the physical device on the network before commissioning the device. You can
use the DownloadConfigProperties() and UploadConfigProperties() methods to
do so. For guidelines on this, see Device Configuration Considerations on page 123.

After you have associated a device with an interface (by commissioning it, or by
specifying a DeviceTemplate and Channel when you create the AppDevice), you can
use the DownloadConfigProperties() and UploadConfigProperties() methods
for a variety of tasks, including the following:

• Setting configuration properties to their default values.

• Setting unknown configuration property values.

To set the configuration properties for a device to their default values, use one of the
following two methods:

• If the device is using a device template based on an external interface file that
defines default values for the device's configuration properties, set all the
configuration properties to the default values in the external interface file by
calling DownloadConfigProperties() with the
lcaConfigPropOptSetDefaults and lcaConfigPropOptLoadValues options
set. Do not specify the lcaConfigPropOptIncludeMfgOnly option, as this will
cause calibration parameters set by the manufacturer to be overwritten. This
operation will ensure that devices that were previously installed on another
network are returned to their default state.

• Set the default configuration property values in the LNS database to match the
current values stored on the physical device on the network by calling
UploadConfigProperties() with the lcaConfigPropOptSetDefaults and
lcaConfigPropOptLoadValues options set. Note that the
UploadConfigProperties() method can only be called after the device has
been commissioned and updated by LNS.

To set unknown configuration property values, use one of the following two methods:

• If the device is using a device template based on an external interface file that
defines default values for the device's configuration properties, set all unknown
configuration properties in the physical device on the network to match the
default values stored in the LNS database by calling
DownloadConfigProperties() with the lcaConfigPropOptLoadUnknown
and lcaConfigPropOptLoadValues options set.

You can determine the device template’s basis by inspecting the
DeviceTemplate object’s ProgramType property.

• Set all unknown configuration properties in the LNS database to match the
values stored in the physical device on the network by calling
UploadConfigProperties() with the lcaConfigPropOptLoadUnknown and
lcaConfigPropOptLoadValues options set.

You should note that there are other options you can choose from when calling
DownloadConfigProperties() or UploadConfigProperties(). For example, you

LNS Programmer's Guide 127

can use the lcaConfigPropOptOnlyDeviceSpecific option to only download or
upload configuration properties with the device-specific attribute set. Or, you can use the
lcaConfigPropOptExcludeDeviceSpecific option to exclude configuration
properties with the device-specific flag set. For more information on device-specific
configuration properties, see Device-Specific Configuration Properties on page 232.

When downloading configuration properties, you can use the
lcaConfigPropOptClearUpdatePending option to clear all pending updates on the
device affected by the download. Or, you can specify the
lcaConfigPropOptIncludeMfgOnly option to only include manufacturing-only
configuration properties in a download.

There are several other options you can choose from when downloading or uploading
configuration property information. For more information, see the LNS Object Server
Reference help file.

NOTE: Some devices implement configuration properties that cannot be accessed unless
the device is in the online state (i.e. the State property is set to lcaStateCnfgOnline).
These are devices that use the file transfer protocol for configuration property access.
You can identify these devices by the existence of the SNVT_file_req and
SNVT_file_status type network variables in the NetworkVariables collection that
belongs to the AppDevice object’s Interface object.

Writing Configuration Property Values
You can also use LNS to read or write to the values of the configuration properties on a
device one at a time. To do so, call the GetDataPoint() method on the
ConfigProperty object to acquire a DataPoint object. If you have not written a
configuration property, or set its default value, you cannot read it if any of the following
conditions are true:

• The device has not been commissioned.

• The LNS Object Server cannot communicate with the device.

• The device template is based on a definition that was uploaded from the device,
and the configuration properties have not yet been uploaded.

For more information on using DataPoint objects with configuration properties, see
Using the GetDataPoint Method on page 232.

Note that there is one case where you may need to read or write to the value of a
ConfigProperty object directly, without using a DataPoint object. Data points are
very useful when reading and writing formatted data, or when accessing an entire raw
data value as a whole. However, if you want to access arbitrary bytes of raw data to read
or write a range of elements in an array configuration property, you should not use a
data point. Instead, you should use the GetRawValuesEx() and SetRawValuesEx()
methods of the ConfigProperty object. See the LNS Object Server Reference help file
for more information on these methods.

Setting Devices Online
The final step in installing a device is to set the device online. To do so, set the
AppDevice object’s State property to lcaStateCnfgOnline as displayed below:

 LNS Programmer's Guide 128

MyAppDevice.State = lcaStateCnfgOnline

You can set a device online or offline at any point by writing to its State property.
However, you should be aware that devices cannot receive or respond to network events
related to monitor and control while they are offline. For example, if a Network Service
Device is offline, then all applications using the Network Service Device will not receive
monitor and control events until the Network Service Device is back online. Or, if an
application device is offline, then that device will not be able to receive incoming network
variable events or respond to network variable polls.

When you consider this, you should note that devices are taken offline while they are
being reconfigured. For example, if you remove a connection between an application
device and the Network Service Device, both the application device and Network Service
Device will be taken offline while the LNS removes the connection. During that time, the
Network Service Device will not process network variable updates, nor will it poll
network variables, since the configuration of the application device and the configuration
of the Network Service Device are in a state of fluctuation.

Although Echelon recommends that you only modify the device’s configuration while it is
offline, some devices may need to be reconfigured while they are operational. Therefore,
you can set the ConnectionUpdateType property of an AppDevice object to
lcaConnectionUpdateTypeOnline to prevent the device from being taken offline
while changes to network variable connections on the device are being made.

Note: If you are using an explicit transaction to install and configure a device, you must
commit the transaction before setting the device online. For more information on
transactions, see Using Transactions and Sessions on page 64. If you are installing
multiple devices at once, you should first install and configure all the devices, and then
set them online. This prevents the devices from attempting to communicate on a
partially installed network.

Other Device Management Operations
This section describes tasks you may need to perform when managing the devices you
have installed on your network. This includes the following:

• Testing Devices and Detecting Device Failures

• Replacing Devices

• Upgrading Devices

• Decommissioning Devices

• Removing Devices

Testing Devices and Detecting Device Failures
To test the current functionality and state of a device, call the Test() method on the
appropriate AppDevice object. LNS will then perform a series of tests on the device, in
this order:

1. LNS will verify that it can address the device by its Neuron ID. If this test fails, it
indicates either a problem with the device (the device either is powered off, detached
from the network, or defective), a problem with the channel (physical problem or too

LNS Programmer's Guide 129

much network traffic), or a problem with an intervening router (overloaded, offline,
powered off, detached from the network, or defective).

2. LNS will compare the network address retrieved from the device with the network
address stored in the LNS database for the device. A mismatch indicates a problem
with the device. It could also indicate that the device has been configured by an LNS
application using a different network database or by a non-LNS network tool.

3. LNS will verify that it can communicate with the device using the subnet/node
address assigned to the device in the LNS database. Failure to communicate using
subnet/node addressing may indicate a problem with the configuration of one or more
routers on the network. This could occur if one or more routers on the network has
been configured using a different network or by a non-LNS network tool.

4. LNS will verify that only one device on the network is using the network address
specified for the device. Multiple devices with the same network address may
indicate that a configured device was moved to this network from another one.

5. LNS will validate the device’s program ID, and the device’s authentication setting.

When an application device is tested, the details and results of the test are contained in
the LastTestInfo property of the AppDevice that was tested. When a router is tested,
the results can be found in the LastTestInfo property of the router’s RouterSide
objects. This property contains a TestInfo object that contains properties that will
return the expected and actual values of the device attributes tested. If a test fails, the
AuxResultData property of the TestInfo object will indicate whether a Neuron ID,
domain ID, subnet/Node ID, or program ID mismatch caused the test to fail.

When you call Test() on a router, a router failure can result in failure reports for all of
the devices on channels that are accessed via the failed router. For more information on
routers and on router failures, see Managing Networks with Multiple Channels on page
169.

Note that it can take a significant amount of time to test a device, depending on the
complexity of the tests performed in the device's application. For more information on the
Test() method and the various properties of the TestInfo object, see the LNS Object
Server Reference Help File.

Using the OnAttachment Event
The Test() method causes several messages to be sent to a device. An alternative way
to test a device that requires fewer messages is for the LNS Server to automatically ping
devices using the LonTalk Query Status network diagnostic message. The LNS Object
Server will determine whether or not a device has become detached from the network if it
fails to respond to a ping, or if it returns an unexpected response to a ping. If a device
does not respond to a ping, the LNS Object Server tests the intervening routers to verify
that the failure is due to the device, and not to a router along the communications path.

The frequency of the pinging is determined by the device's PingClass property. This
property may be set to one of the following values:

lcaPingClassMobile Check detachment frequently (1
minute by default).

lcaPingClassTemporary Check detachment less frequently
(2 i b d f l)

 LNS Programmer's Guide 130

(2 minutes by default).

lcaPingClassStationary Check detachment occasionally (15
minutes by default).

lcaPingClassPermanent Never check.

You can set the interval assigned to each of the four ping classes by writing to the
System object's PingInterval property. The default class is
lcaPingClassStationary, unless the System object’s InstallOptions property is
set to lcaSharedMedia, in which case pinging will be disabled.

When the LNS Object Server discovers that a device has become attached or detached, it
uses the OnAttachment event to report this information. To program your application to
test for device failures using attachment events, call the BeginAttachmentEvents()
method on the System object to register your application for the OnAttachment event.
Filter the OnAttachment events your application receives for device failures. These are
events where the IsAttached parameter returned with the event is False, and the
device has not been manually removed from the network. You could then subject those
devices and routers to more detailed investigation using the AppDevice or Router
object’s Test() method. However, your OnAttachmentEvent event handler should not
contain code to examine suspect devices. It should return to LNS as soon as possible, and
notify some other component of your application to perform a thorough test on any
suspect devices. For more guidelines on creating LNS event handlers, see Event
Handling on page 67.

Note that when a router becomes unattached, this will usually prevent LNS from
communicating with any devices on the far side of the router, and it will prevent
communication between devices on channels connected by the router. In this case, LNS
will generate an OnAttachmentEvent for the router, but not for each affected device.

Performing Diagnostics on LonMarkObjects
As described in Device Interfaces on page 104, each application device contains a group of
LonMarkObject objects that represent the LonMark Functional Blocks on that device.
The LNS Object Server recognizes LonMark Functional Blocks defined in devices that
conform to the LonMark Application-Layer Interoperability Guidelines, version 3.0 or
later. Each LonMarkObject has a Status property that reflects the current status of
the LonMark Functional Block represented by that specific LonMarkObject.

Each LonMarkObject also contains a SelfTestResults property. When your
application reads the SelfTestResults property, the device application will perform a
self-test on the LonMarkObject, and return an ObjectStatus object describing the
results of the self-test. If the self-test takes more than 20 seconds to complete, an
exception indicating failure will be raised. In this case, poll the SelfTestInProgress
property of the LonMarkObject until it returns False. Then, check the FailSelfTest
property to determine why the self-test failed. Another property (LonMarkAlarm)
indicates the current alarm status of the LonMarkObject object, if the object supports
alarms.

Figure 6.3 depicts these steps.

LNS Programmer's Guide 131

Read the SelfTestResults property of a LonMarkObject to
perform a self-test on the LonMarkObject:

Dim MyObjectStatus as LcaObjectStatus
Set MyObjectStatus = LonMarkObject.SelfTestResults

Does the test complete?

If not, an exception will be thrown.
Follow these steps:

Poll the SelfTestInProgress
property until it returns False.

Read the FailSelfTest property to
determine why the self-test failed.

If yes, the self-test will return an
ObjectStatus object.

Examine the properties of the
ObjectStatus object to see the

results of the self-test. See the LNS
Object Server Reference help file for
more information on these propertes.

Figure 6.3 Performing a Self-Test on a LonMarkObject

NOTE: The LonMarkAlarm object supports alarming on devices that implement their
alarms through SNVT_alarm network variables, but not through the more recent
SNVT_alarm2 type. However, SNVT_alarm2 type network variables can be monitored
and controlled using the standard monitor and control techniques described in Chapter 9
of this document.

To receive meaningful results for the SelfTestResults and Status properties of the
LonMarkObject, the device must support these features. If the device does not comply
with version 3.0 or later of the LonMark Application-Layer Interoperability Guidelines,
then the LonMarkObjects and ConfigProperties collections will be empty for the
device, and the properties mentioned in this section will be inaccessible.

Some devices that comply with version 3.0 or later of the LonMark Application-Layer
Interoperability Guidelines may not support the self-test feature. Reading the
SelfTestResults property in this case will cause an exception to be thrown. You can
use the ReportMask property of the LonMarkObject object to determine whether a
device supports self-tests.

Replacing Devices
This section describes how to replace a device with a new device that contains the same
application image and external interface as the old one. Replacing a device in a
LONWORKS network is different than replacing a device in a hardwired system. You
cannot simply unplug the old device, and plug in a new one to take its place in a
LONWORKS network. You must transfer the network image (network address and
connection membership) from the old device to the new device. If the old device contained

 LNS Programmer's Guide 132

application configuration data, it might also be necessary to set the configuration
properties of the new device to match the configuration property values in the old device.

As described earlier, the AppDevice object represents the logical attributes of a physical
device in the LNS database, including its network address, connections, and
configuration properties. When the AppDevice object is commissioned, it becomes
associated with the physical device on the network. When an AppDevice object is
replaced, the AppDevice object is updated to represent a new physical device. To replace
a device, install the new device on the network. Then, follow these steps:

1. Obtain the AppDevice object representing the original device in the LNS database.

2. Acquire the new device’s Neuron ID using any of the methods described in the
Neuron ID Assignment section on page 115. Assign the acquired Neuron ID to the
NeuronId property of the AppDevice acquired in step 1.

3. If necessary, load the new device’s application image, as described in Loading Device
Application Images on page 119. Use the AppDevice object acquired in step 1.

4. Start a transaction.

5. Call Replace() or ReplaceEx() on the AppDevice being replaced. The LNS
Object Server will then perform the following tasks:

• It deconfigures the old device if it can communicate with it.

• It loads the network image of the old device into the new device.

• It leaves the new device offline.

If you use the Replace() method and the system management mode is set to
lcaMgmtModeDeferConfigUpdates, these tasks will not be performed until the
system management mode is set back to lcaMgmtModePropagateConfigUpdates.
If the system management mode is set to lcaMgmtModeDeferConfigUpdates and
you want these tasks performed right away, you should use the ReplaceEx()
method with the lcaReplaceFlagPropagateUpdates option as the flags element
to perform the replacement.

When you use the ReplaceEx() method, you can also use the flags parameter to
determine whether any of the configuration property values from the old device will
be preserved in the LNS database. Otherwise, the configuration properties will be set
to the unknown state. Echelon recommends that you use ReplaceEx() and preserve
the old configuration property values whenever possible.

6. Download the configuration property information for the new device into the LNS
database by calling DownloadConfigProperties() with the
lcaConfigPropOptLoadValues option set.

7. Commit the transaction.

8. Set the new device online by setting the State property of the AppDevice object to
lcaStateCnfgOnline.

Replacing Network Service Devices
You should not use the Replace() or ReplaceEx() methods on a Network Service
Device. Generally, LNS will perform Network Service Device replacements

LNS Programmer's Guide 133

automatically. However, you may need to manually replace your Network Service Device
in some cases. You will need to use the PreReplace() method to do so.

For example, you will need to use this method if you open a network remotely from a new
PC, and want that client to use the Network Service Device configuration that was
previously associated with another remote client PC (effectively moving the remote
application and Network Service Device configuration from one PC to another). An
exception to this is if the original remote client used a standard network interface, and
you move the network interface to the new PC as well. In this case, LNS will
automatically associate the new PC with the original client based on the standard
network interface’s Neuron ID.

You will also need to follow the procedure described below to reattach a Network Service
Device to a network if the network has been removed from the RemoteNetworks
collection for the PC, and you are using a high-performance (Layer 2/VNI) network
interface, or if you install a new network interface on the PC.

To re-associate a client with the correct Network Service Device and re-attach the client
to the network, follow these steps:

1. Get the Network Service Device to be attached to from the
NetworkServiceDevices collection.

Dim MyNSD as LcaNetworkServiceDevice
Set MyNSD = MyNetworkServiceDevices.Item(“Supervisor Room”)

2. Call PreReplace() on the network you want to attach your application to, with the
selected Network Service Device as the sourceNSD element.

MyNetwork.PreReplace(MyNSD)

3. Close the network, and release all references to the network.

MyNetwork.Close()

4. Call Replace() on the network.

MyNetwork.Replace()

5. Call Open() on the network to open the network with all previously created monitor
sets present.

MyNetwork.Open()

Upgrading Devices
When a device has a new application loaded, or when a device is replaced, the device's
external interface may change. You can call the Upgrade() method to upgrade the
device to be compatible with the updated the external interface with minimal disruption
to existing connections and configuration. You can use the Upgrade() method on all
device types. However, it generally only makes sense to upgrade a device to support
functionality similar to the device’s original purpose (e.g. to upgrade to a later version of
the device).

To upgrade a device, follow these steps:

 LNS Programmer's Guide 134

1. Call the System object's StartTransaction() method. You should always call the
Upgrade() method within a transaction. This allows for easy reversal of the
upgrade. For more information on transactions, see Using Transactions and Sessions
on page 64.

2. If the device upgrade includes new hardware, make sure the new physical device is
attached to the network, and that the AppDevice object's NeuronId property is set
to the proper Neuron ID.

3. Call the Upgrade() method on the AppDevice object. This method optionally takes
a DeviceTemplate object as a parameter. If a DeviceTemplate is not supplied, the
new external interface will be read directly from the device. If your application is not
attached to the network, you must supply a DeviceTemplate, or an exception will
be generated.

NOTE: In some cases, you may need to upgrade your Network Service Device,
usually because its network interface has changed. Generally, LNS will upgrade the
Network Service Device automatically. However, in some cases, you may need to
perform the upgrade manually. In this case, you should not supply a
DeviceTemplate object. For more information, see Network Interfaces and Network
Service Devices on page 271.

4. The Upgrade() method returns an UpgradeStatus object. This object contains the
Result property, which will bet set to lcaUgResSuccess if the upgrade was
successful. If the upgrade was not successful, call the CancelTransaction()
method on the System object to back out of the upgrade.

5. The UpgradeStatus object also contains an UpgradeInfos collection. This
collection contains one UpgradeInfo object for each LonMark Functional Block,
network variable, message tag, monitor set, monitor point, and configuration
property in the original external interface. Each UpgradeInfo object contains a
summary of how the old LonMark Functional Block, network variable, message tag,
configuration property, monitor set, or monitor point is represented in the new
interface. This includes the following properties:

Class This property indicates whether the UpgradeInfo
object represents a LonMark Functional Block,
network variable, message tag, configuration
property, network variable configuration property,
monitor set, or monitor point.

FromIndex This property returns the device index value assigned
to the external interface component represented by
this UpgradeInfo object in the external interface
before the upgrade.

FromOwnerIndex For UpgradeInfo objects that represent
configuration properties that are contained within
LonMarkObjects or network variables, this property
returns the device index value assigned to the owner
LonMarkObject or network variable in the external
interface before the upgrade. Otherwise, this property
returns –1.

ToIndex This property contains the device index value

LNS Programmer's Guide 135

assigned to the external interface component
represented by this UpgradeIndo object in the
external interface after the upgrade.

ToOwnerIndex For UpgradeInfo objects that represent
configuration properties that are contained within
LonMarkObjects or network variables, this property
returns the device index value assigned to the owner
LonMarkObject or network variable in the external
interface after the upgrade. Otherwise, this property
returns –1.

Status This property indicates whether the external interface
component represented by this object was deleted,
retained, or moved during the upgrade. If the
component is a network variable or message tag, it
also indicates whether the component was removed
from some or all of its connections.

Reason This property indicates why the object was deleted,
retained, or moved during the upgrade.

6. After examining the UpgradeStatus object, call the CommitTransaction()
method to commit the changes to the LNS database and complete the upgrade.
Remember that you can still call CancelTransaction() to cancel the upgrade at
this point.

7. If you are upgrading the device so you can load a new application, load the new
application into the device, as described in Loading Device Application Images on
page 119.

8. Recommission the device. This completes the upgrade process. For more information
on commissioning devices, see Commissioning Devices on page 121.

Decommissioning Devices
At some point, you may want to disassociate an AppDevice or Router object in the LNS
database from the physical device on the network, without removing the device from the
LNS database. This could allow you to test different designs for a network, without
consuming additional LNS Device Credits each time you remove, re-add, and re-
commission a device to test a different network design.

To facilitate this, LNS provides a Decommission() method. You can call this method on
an AppDevice or Router. This sets the device’s NeuronId property to 000000000000,
and deconfigures the device or router. Note that manually setting the NeuronId property
to 000000000000 will not cause a device to be decommissioned.

When you decommission a device, an LNS Device Credit will be returned to your credit
pool. When you are ready to restore the device to normal operation, you can
recommission the device, and an LNS Device Credit will be charged. For more
information on LNS Device Credits and LNS licensing, see Chapter 13, LNS Licensing.

 LNS Programmer's Guide 136

Moving Devices and Managing Networks With Multiple
Channels
If you are managing a network with multiple channels, there are many special tasks you
will need to perform. This includes the installation and configuration of the routers on
your network. For information on these tasks, see Managing Networks with Multiple
Channels on page 169. This section also discusses how you can move a device from one
channel to another.

Removing Devices
During the lifetime of a network, you may need to remove devices from service. This
could be for a number of reasons. You may not need the device anymore, or you may want
to move the device to another network.

A device in a network should be logically removed from the LNS database before it is
physically removed from the network. The logical removal process clears device’s logical
address and authentication key. It also sets the device to the offline state, so that the
device can be installed in another network, and then rediscovered by another LNS Object
Server, if necessary. If you are moving the device to another network, this also ensures
that attaching the device to a new network will not cause address duplication, which
could lead to improper system behavior. The logical removal process also updates devices
that communicated with the target device, so that they no longer attempt to
communicate with it.

To logically remove a device, invoke the Remove() method on the AppDevices collection
containing the device. You will need to specify the device by its name or collection index
value. If the device only belongs to one subsystem, this disconnects the device’s network
variable and message tags, removes the device’s network address, and places the device
in the unconfigured state. If the AddReference() method has been used to place the
device in multiple subsystems, the device must be removed from the AppDevices
collection for all the subsystems it has been added to. You can determine which
subsystems a device belongs to by reading its Subsystems property. When completely
removed, the device is left in the unconfigured state and its service LED (if present)
flashes slowly.

This example removes an application device named AppDevice1:

Dim MyAppDevices As LcaAppDevices
Set MyAppDevices = MySubsystem.AppDevices
MyAppDevices.Remove("AppDevice1")

Removing Devices From Multiple Subsystems
The preceding example removes a device from a single subsystem. Remember that if an
AppDevice is referenced in multiple subsystems, you will need to remove it from all the
subsystems it belongs to in order to completely remove it from a network database. Once
you have removed the AppDevice from all the subsystems it belongs to, the physical
device on the network will be removed from connections, set to the unconfigured state,
and be ready to be physically removed from the network. The device will indicate that it
has reached the unconfigured state by slowly flashing its service LED. Note that it is not
an error if LNS fails to communicate with the device. Since the device might be logically
removed as a result of a prior physical removal, LNS will update all connections the

LNS Programmer's Guide 137

device was associated with accordingly, but will not signal an error if the device itself
cannot be communicated with.

To remove a given AppDevice object that is referenced in multiple subsystems, collect
the list of subsystems it belongs to by reading the AppDevice object’s Subsystems
property. This returns a Subsystems object. Obtain the AppDevices collection for each
Subsystem object contained in the collection, and remove the AppDevice object from
each of them. You should delete the AppDevice by its name and not its index, as the
index will vary for each AppDevices collection it belongs to.

The following example removes an application device named AppDevice1 from all
subsystem objects it belongs to:

‘ Start a transaction:
MySystem.StartTransaction

‘ Fetch the AppDevice that is to be removed:
Dim MyAppDevices As LcaAppDevices
Dim MyAppDevice As LcaAppDevice
Set MyAppDevices = MySubsystem.AppDevices
Set MyAppDevice = MyAppDevices.Item(“AppDevice1”)

‘ Fetch this device’s Subsystems object:
Dim TheSubsystems As LcaSubsystems
Set TheSubsystems = MyAppDevice.Subsystems

‘ Remove the device from all Subsystem objects it belongs to
Dim CurrentSubsystem As LcaSubsystem
Dim CurrentAppDevices As LcaAppDevices
While TheSubsystems.Count
 Set CurrentSubsystem = TheSubsystems.Item(1)
 Set CurrentAppDevices = CurrentSubsystem.AppDevices
 CurrentAppDevices.Remove(“AppDevice1”)
End While

‘ Release the stale reference held by the MyAppDevice variable:
Set MyAppDevice = nothing

‘ Commit the transaction:
MySystem.CommitTransaction

Note that the MyAppDevice variable becomes stale during this process. As the last
reference to the AppDevice is removed from the database, the variable itself refers to an
item that no longer exists. Accessing any property or method of the MyAppDevice object
variable will cause the LCA:#116 lcaErrStaleObject exception to be thrown. To
prevent this, you should release stale references as shown in the example above.

Connecting Devices
To understand how to use LNS to connect network variables and message tags, you
should first consider how Neuron Chip-based devices process incoming messages. There
are two pieces of information contained within each device that the Neuron Chip uses to
process and qualify an incoming network variable update messages. The first is the
message’s destination address. The device only processes the message if the message is
addressed to the device. If the device determines that the message is addressed to it, and
the message is a network variable message, the device checks if the network variable
selector in the message matches a network variable selector on the device.

 LNS Programmer's Guide 138

Network variable selectors are 14-bit numbers assigned by the LNS Object Server that
identify connected network variables (i.e. network variables that are part of the
connection). Devices may use different names to refer to a network variable, or network
variables may be located at different offsets within each device's memory, resulting in a
different network variable index within each device. However, all network variables in a
connection must have the same network variable selector value. In addition, each
network variable can have only one network variable selector, unless network variable
aliases are used, as described later in this section. This allows the device to uniquely
identify each network variable.

This does not mean that all network variable selectors in a network need to be unique.
Any network variable selector can be used multiple times in the same network, provided
that the devices using the same selector do not share connections or network addresses,
so that the selector is unambiguous to all of the devices.

This does not also mean that only a single selector may apply to a given network
variable. The LNS Server supports network variable aliases transparently. Network
variable aliases allow LNS to map multiple selector values to a single input or output
network variable. The number of network variable aliases on each device is defined by
the device manufacturer, and cannot be changed by an LNS application, but the LNS
Server will take advantage of available aliases, if necessary.

The LNS Object Server defines connections in terms of hubs and targets. The hubs and
targets are the network variables and messages tags that are bound by the connection.
The hub is the center of a connection. The rest of the network variables and message tags
in the connection are the targets.

If the hub is an input, then all of the targets must be outputs. Likewise, if the hub is an
output, then all of the targets must be inputs. Network variables and message tags may
be accessed through an AppDevice object’s Interface property. Network variables that
are the hubs of connections can be accessed through an AppDevice object’s NVHubs
property. Figure 6.4 shows two connections. The connection on the left would be
specified with the nviValue network variable on Device One as the hub, and the nviTemp
and nviTemp2 network variables on Devices Two and Three as the targets. The
connection on the right would be specified with the nvoStatus network variable on Device
Four as the hub and the nvoSetPoint and nvoControl network variables on Devices Five
and Six as the targets. This second example also illustrates the fact that
NetworkVariable objects can share names and thus are uniquely identified only in
combination with the objects to which they belong (i.e. AppDevice or LonMarkObject).

LNS Programmer's Guide 139

nviValue

nvi_NV1

Device One

Device Three

Device Two

nviTemp

nviTemp2

Hub Network Variable

Target Network Variables

Device Four

nvoStatus

Device Six

Device Five

Target Network Variables

nvoSetPoint

nvoControl

Hub Network Variable

Figure 6.4 Example Connections

Connection Rules
There are several rules you need to consider when creating connections. For network
variable connections, the LNS Object Server enforces these rules:

• Network variables can only be connected to network variables.

• The hub must be either the only input or the only output in the
connection.

• There must be one hub, and at least one target, in each connection.

• All the network variables in the connection must have compatible types.
If SNVTs are used, the LNS Object Server will validate that all members
are the same SNVT type. For non-standard network variables types, the
LNS Object Server will verify that all members are the same length, if
length information is available. If length information for a network
variable is not available, the LNS Object Server will treat the network
variable as typeless. The LNS Object Server allows typeless network
variables to be bound to any other network variable type. It is the
responsibility of the LNS application to prevent nonsensical connections
from being formed from typeless network variables.

• A polled output network variable can only be connected to polling input
network variables.

• Authenticated inputs can only be bound to authenticated outputs.
Authenticated outputs may be connected to unauthenticated inputs.

• Devices can have no more than one output and, in some cases, one input
network variable within a given connection group (i.e. those connections
that share the same network variable selector)

The LNS Object Server allows the use of network variable aliases. Aliasing allows a
network variable to have multiple selector values. In addition, the relaxed connection
constraints that are available with newer versions of the Neuron Chip firmware
sometimes allow selector values to be used more than twice in a given device. Alias table

 LNS Programmer's Guide 140

entries must be defined when the application is created by the device manufacturer, and
are located in non-volatile memory. Available alias table entries are used by the LNS
Object Server to create connections that would otherwise violate the rule requiring
devices to have no more than one input and, in some cases, one output network variable
within a given connection group.

Figure 6.5 shows an example of a connection that can only be made with aliases. A single
network variable (nvi_Output) on Device One is connected to two separate network
variables (nvi_Input1 and nvi_Input2) on Device Two. The LNS Object Server creates
one connection using the primary output network variable in Device One, and creates the
other using an alias table entry on Device One. The second, implicit connection using the
output network variable alias is required because two different selector values are
needed to update the input network variables on Device Two. Both device’s application
programs are unaware of this use of aliases, and the LonTalk protocol automatically
ensures that all their network variables behave correctly. When Device One’s application
program updates its output network variable, messages are sent on both the primary and
the alias network variables in two separate transactions. Device Two, in turn, receives
two network variable updates, one for each input network variable.

nvi_Output

Device One

Device Two

nvi_Input1

nvi_Input2

Figure 6.5 Connections Using Network Variable Aliases

For message tag connections, the LNS Object Server enforces these rules:

• Message tags can only be connected to message tags.

• Each device in a connection can have no more than one message tag in
the connection.

• In a device's application, there is always one message tag called msg_in.
The device sends all messages it receives to this tag. The device
manufacturer can declare multiple other message tags on each device
(usually up to 14). Additionally, you can create dynamic message tags on
some devices. You can use these declared and dynamic message tags to
send bound messages to other devices. If the hub of a connection is a
msg_in message tag, then the connection’s targets must all be declared
or dynamic message tags.

• If the hub is a declared message tag (not the msg_in tag), the targets can
be either declared or dynamic message tags, or msg_in tags.

• A declared or dynamic message tag can be in no more than one
connection because it's directly tied to a single address table entry in the
device.

• The msg_in tag always acts as an input only.

• If there is only one declared message tag in a connection, it acts as an
output only.

LNS Programmer's Guide 141

If there is more than one declared message tag in a connection, all of those declared
message tags act as bi-directional ports.

Adding Connections
To create a connection, you must first select a hub network variable or message tag, a set
of targets, and optionally, a connection description. You can then use LNS to connect the
hub and the targets together, and form a connection. To do so, follow these steps:

1. Select the network variable or message tag that will serve as the connection hub,
and fetch it from the applicable collection. To do so, you need to access an
Interface object from the device that contains the hub network variable or
message tag for the connection. For optimum performance, Echelon recommends
that you perform the following steps within a transaction.
MySystem.StartTransaction()
Set MyAppDevInterface = MyAppDevice.Interface
Set MyNvCollection = MyAppDevInterface.NetworkVariables
Set MyHubNv = MyNvCollection.Item("nvoAlarm")

2. Optionally, modify the connection parameters that the connection will use by
writing to the ConnectDescTemplate property of the hub network variable or
message tag. For more information on this, and for a description of the default
properties that are applied to each connection, see Connection Descriptions on
page 144.
Set MyTemplateLibrary = System.TemplateLibrary
Set MyConnectTemplates = MyTemplateLibrary.ConnectDescTemplates
Set MyConnDes = MyConnectTemplates.Add("SvcUnackd")
MyConnDesc.PropertyOptions = lcaConnPropsServiceType
MyConnDesc.ServiceType = lcaSvcUnackd
Set MyHubNv.ConnectionDescTemplate = MyConnDesc

3. Obtain the target network variables, as described in step 1.
Set AnotherInterface = AnotherDevice.Interface
Set AnotherNvCollection = AnotherInterface.NetworkVariables
Set MyTargetNv = AnotherNvCollection.Item("nviAlarm")

4. Call AddTarget() on the hub network variable. Supply the TargetNv selected
in step 3 as the targetObject element.

MyHubNv.AddTarget(MyTargetNv)

5. Repeat steps 3 and 4 until the target list is complete, or the number of targets
reaches the maximum (25). If you need to add more than 25 connection members,
you must complete this procedure to create the connection, and then add
additional members, as described in the next section, Modifying Connections.

6. Call Connect() on the hub network variable to instantiate the connection, and
commit the transaction to the LNS database.
MyHubNv.Connect()
MySystem.CommitTransaction()

Modifying Connections
This section describes how to add members to a connection, remove members from a
connection, and delete a connection. To add more members to a connection, follow these
steps:

 LNS Programmer's Guide 142

1. Obtain the hub NetworkVariable or MessageTag for the connection you want
to modify.

2. Start a transaction, and then invoke the AddTarget() method for each the new
targets you want to add. It is not necessary to re-specify existing targets. You
must limit the number of targets you add to 25 at a time.

3. When all the targets have been added, invoke the Connect() method on the hub
network variable or message tag. Then, call CommitTransaction() to commit
the transaction to the database.

4. If you need to add more than 25 targets to a connection, you can do so by
repeating steps 2 and 3. When doing so, you should perform all the steps within
the same transaction.

To remove one or more targets connected to a hub, or to remove an entire connection,
follow these steps:

1. Obtain the hub NetworkVariable or MessageTag for the connection you want
to modify.

2. Start a transaction, and specify the target network variables or message tags to
be removed from the connection using the hub’s AddTarget() method. You must
limit the number of targets you remove at one time to 25.

3. Call the Disconnect() method on the connection hub. Then, call
CommitTransaction() to commit the transaction to the database.

If no targets are specified in step 1 before the Disconnect() method is called,
the LNS Object Server will disconnect all targets from the hub, thus deleting the
connection. Note that this does not remove the hub network variable or message
tag from all connections it is involved in. It only removes the connections for
which the network variable or message tag was the connection hub.

4. If you need to remove more than 25 targets from a connection, you can do so by
repeating steps 2 and 3. When doing so, you should perform all the steps within
the same transaction.

5. To remove a specified network variable or message tag from all connections it is
involved in, you will also need to examine the network variable’s NVHubs
property, or the message tag’s MTHubs property. A network variable’s NVHubs
property contains a collection of the hub network variables for each connection in
which it is a target. A message tag’s MTHubs property contains a collection of the
hub message tags for each connection in which it is a target. You can call the
Disconnect() method on the connection hubs accessed through these
collections to remove a network variable or message tag from the connections it is
involved in.

Mirrored Connections
LNS allows network variables to participate in multiple connections. As a result, it is
possible to create arbitrarily complex network variable connections on a LONWORKS
network (subject to the constraints of the LonTalk protocol). A consequence of the
superposition of connections is that a network variable may find itself in a "mirrored"
connection segment. This situation occurs when one network variable (A) is the hub of a

LNS Programmer's Guide 143

connection containing a target network variable (B), and B is the hub of a connection
containing A. Thus, connection segment AB is mirrored by segment BA.

When removing connections, it is important to recognize that the network variables
involved in mirrored connections will remain bound until both connections are removed.
Mirrored connections may also appear as a side-effect of network recovery.

Listing Connections and Connection Members
LNS provides several connection-related collections you can use to identify what
connections a network variable or message tag is involved in:

• Each NetworkVariable object contains an NVHubs property. This
property returns a NetworkVariables collection containing the hub
network variables of each connection that the network variable is part of.
If the network variable is the hub for any connections, it will also appear
in the collection.

• Each NetworkVariable object also contains an NVTargets property. If
the network variable is a connection hub, this property returns a
NetworkVariables collection containing the connection’s target
network variables. If the network variable is not a connection hub, this
collection will be empty. Note that network variables may be involved in
connections as both hubs and targets. Thus, to list all network variables
to which a network variable is connected, you must iterate through its
NVHubs and NVTargets collections.

• Similarly, each MessageTag object contains an MTHubs property. This
property returns a MessageTags collection containing the hub message
tags of each connection that the message tag is part of. If the message tag
is the hub for any connections, it will also appear in the collection.

• Each MessageTag object also contains an MTTargets property. If the
message tag is a connection hub, this property returns a MessageTags
collection containing the connection’s target message tags. If the message
tag is not a connection hub, this collection will be empty.

• Each AppDevice object contains an NVHubs property and an MTHubs
property. These properties contain collections of network variable and
message tag connection hubs the device contains. This may be useful if
you are removing a device from the system, and want to make sure its
removal will not affect any connections.

• Each Network object has a Connections object, which contains
collections of all the message tag or network variable connection hubs in
the network. You can access these collections through the Connections
object’s NetworkVariables or MessageTags properties. These
collections contain only those NetworkVariable or MessageTag objects
on the network that are currently acting as connection hubs. Like other
collection objects, they may be searched by name or by index. The use of
these collections is discouraged for large systems, as it may take a long
time to access these collections.

 LNS Programmer's Guide 144

Using the OnNodeConnChange Event
You may want your application to be notified when devices are added to or removed from
connections on your system. You can accomplish this with the OnNodeConnChange
event. To use the OnNodeConnChange event, call the BeginNodeConnChangeEvent()
method on the System object.

The OnNodeConnChange event will then be fired each time a connection on your system
is created or modified, or each time a connection description template being used by a
connection on your system is modified.

If you want, you can filter incoming OnNodeConnChange events for a specific device
using the ObjectHandle parameter or a specific type of connection change (i.e. target
added, target removed, or connection description template changed) using the
ObjectChangeType parameter.

Note the System object’s MgmtMode property and the network attachment status
determine whether or not connection changes will be propagated to devices on the
network. Use the OnChangeEvent event or monitor the value of an AppDevice object’s
CommissionStatus property to determine when a connection has been committed to the
network.

For more information on the OnNodeConnChange event, see the LNS Object Server
Reference help file.

Connection Descriptions
To make it easy to specify the behavior of a connection, the LNS Object Server provides
connection descriptions in the form of ConnectDescTemplate objects. Each network
variable and message tag has a ConnectDescTemplate property that returns a
ConnectDescTemplate object. When a network variable or message tag acts as a
connection hub, its current ConnectDescTemplate is applied to that connection.

Each connection description template defines basic connection attributes, such as the
LonTalk messaging service and authentication setting used by the connection. The
default connection description applied to all network variables and message tags has the
following settings:

Service type For network variables, use whatever service the output
network variables specify. For message tags, the LNS
Object Server assumes acknowledged service.

Priority For network variables, use priority if the transmitting
network variable specifies priority. Do not use for
message tags.

Authentication For network variables, use authentication if a receiving
network variable has authentication enabled. Do not use
for message tags.

Retry count Calculated based on topology and service type.

Repeat count Calculated based on topology and service type.

Repeat timer Calculated based on topology and service type.

Receive timer Calculated based on topology and service type.

LNS Programmer's Guide 145

Transaction timer Calculated based on topology and service type.

Broadcast options No broadcast addressing.

Alias options Use network variable aliases to resolve selector conflicts.

See the LNS Object Server Reference help file for more detailed information on these
properties. For instructions on how to modify these attributes, and the considerations
you should make when doing so, see Using Custom Connection Description Templates on
page 148.

 LNS Programmer's Guide 146

LNS Programmer's Guide 147

Chapter 7 - Network

Management: Optimizing
Connection Resources

This chapter describes advanced topics you may need to
consider when managing the connections on your network.
This includes considerations you should make when
customizing your own connection description template, and
guidelines to follow to maximize your network’s connection
resources.

 LNS Programmer's Guide 148

Using Custom Connection Description Templates
As described in Chapter 6, the LNS Object Server provides connection descriptions in the
form of ConnectDescTemplate objects that determine the behavior of a connection.
Each network variable and message tag has a ConnectDescTemplate property
containing its ConnectDescTemplate object. When a network variable or message tag
acts as a connection hub, its ConnectDescTemplate is applied to that connection.

To create a new ConnectDescTemplate object and apply it to a connection, follow these
steps:

1. Invoke the Add() method on the ConnectDescTemplates collection retrieved
from the system’s TemplateLibrary.

Set MyTemplateLibrary = MySystem.TemplateLibrary
Set MyConnTemplates = MyTemplateLibrary.ConnectDescTemplates
Set MyNewTemplate = MyConnTemplates.Add(“myNewTemplate”)

2. You can customize the template created in step 1 by writing to its properties.
Note that you must designate the properties you are modifying as active
properties by writing to the PropertyOptions property. When building a
connection, the LNS Object Server only uses the attributes of the connection
description that are designated as active. See the LNS Object Server Reference
help file for more information on the PropertyOptions property.

The following code sample changes the new ConnectDescTemplate object’s
RepeatTimer and ServiceType properties, and then sets those properties as
active:

MyNewTemplate.RepeatTimer = 7
MyNewTemplate.ServiceType = lcaSvcAckd
MyNewTemplate.PropertyOptions = lcaConnPropsServiceType OR _
 lcaConnPropsRepeatTimer

For descriptions of the various properties of the ConnectDescTemplate object,
and guidelines to follow when writing to those properties, see the next section,
Setting ConnectDescTemplate Properties.

3. Once you have modified the ConnectDescTemplate object to suit your needs,
assign it to the ConnectDescTemplate property of a network variable or
message tag you plan to use as a connection hub.

 Set ConnectionHub.ConnectDescTemplate = MyNewTemplate

4. Create a connection using the selected network variable or message tag as the
connection hub. The connection will use the new template. For more information
on creating connections, see Adding Connections on page 141.

You can also modify the attributes of a connection description that is already being used
by a connection hub, and apply those changes to the connection. To do so, follow these
steps:

1. Access the ConnectDescTemplate object of the hub network variable or
message tag for the connection you want to modify

 Set MyTemplate = ConnectionHub.ConnectDescTemplate

LNS Programmer's Guide 149

2. Set the properties of the ConnectDescTemplate object, as described in step 2 of
the procedure in the previous section. Note that the aliasing options used for
network variables in a connection are determined when the network variable is
added to a connection. As a result, changing the AliasOptions property of a
ConnectDescTemplate object will not affect the aliasing options applied to
network variables that have already been added to connections using that
template. It will only affect the aliasing options applied to network variables that
are subsequently added to those connections. For more information on using
network variable aliases, see the next section, Optimizing Connection Resources.

3. Re-assign the ConnectDescTemplate object to the hub network variable or
message tag. This will cause the attributes of the connection using that
ConnectDescTemplate to be updated. In previous versions of LNS, it was
necessary to re-invoke the Connect() method. Note that this operation may take
a considerable amount of time to complete, depending on the number of targets in
the connection and the network topology.

Set ConnectionHub.ConnectDescTemplate = MyTemplate

Setting ConnectDescTemplate Properties
Table 7.1 lists several of the properties of the ConnectDescTemplate object, and the
special considerations you need to make when writing to those properties.

Table 7.1 Connection Description Template Properties

Property Description

AliasOptions Use this property to determine whether or not LNS will use
network variable aliases to resolve selector conflicts on a
given device. The next section of this document, Optimizing
Connection Resources, includes a discussion of when and
how you should use network variable aliases.

 LNS Programmer's Guide 150

Property Description

BroadcastOptions This property determines whether LNS will use group or
broadcast addressing. You should note that when using
group addressing, there are 256 distinct groups per
network, and the group addresses consume address table
entries in both the receiving and transmitting devices
involved in the connection. Most application devices are
limited to 15 address table entries, and Network Service
Devices that use standard network interfaces are limited to
15 address table entries for use with group addressing.
Network Service Devices that use high performance
network interfaces support up to 256 address table entries.

Broadcast addressing cannot be used with the
acknowledged or request messaging services. In addition,
domain broadcasting cannot be used with the
unacknowledged/repeat messaging service. When LNS uses
broadcast addressing, it uses subnet broadcast if all
addressed devices are in the same subnet. Otherwise, it
uses domain broadcast addressing. You can set the service
type for a connection by writing to the ServiceType
property. Broadcasting with network variables applies only
to outputs.

The next section of this document, Optimizing Connection
Resources, includes a discussion of when and how you
should use broadcast addressing.

ReceiveTimer
RepeatTimer
TransmitTimer

The default values for these properties are determined
based on the network topology. Echelon recommends that
you do not change these properties from their default
values. If the default values for these properties are not
suitable for your application and you need to change them,
Echelon recommends that you use the Delay property of
each Channel object the connection is using to ensure that
each message is sent at the correct interval. The Delay
property allows your application to specify the number of
milliseconds expected to send a message and receive an
acknowledgment on the specified channel, so that
automatic timer calculations made by LNS can be affected
accordingly.

These properties accept a range of encoded values from 0 to
15. You can also write the value 254 to the property at any
time to restore it to the default. See the LNS Object Server
Reference help file for more information on these properties,
and for the actual values that correspond to each encoded
value.

RepeatCount
RetryCount

The default values for these properties are determined
based on the network topology. They each accept a range of
0-15.

LNS Programmer's Guide 151

Property Description

ServiceType This property allows you choose from the following
messaging services:

Acknowledged
Unacknowledged Repeat
Unacknowledged

If your application will be sending messages to large
numbers of devices at once, one of the unacknowledged
messaging services may be desirable, as the
acknowledgement messages may generate a significant
amount of network traffic. You should only use the
request/response messaging service if the devices involved
in your connections are designed to send response
messages.

Certain service types may be desirable over others,
depending on the addressing mode and network variable
alias usage of your connection. For more information on
this, see the next section, Optimizing Connection Resources.

This property does not apply to message tag connections, as
the service type is part of the explicit message and is
defined by the application sending the message.

Note that the request/response service type is no longer
supported by LNS, because network variable updates do
not use this service.

UseAuthenticationFlag This property indicates whether or not the connection will
use authentication. This property does not apply to
message tag connections, as the authentication flag is part
of the explicit message and is defined by the application
sending the message.

UsePriorityFlag This property indicates whether or not the connection will
use priority slots when sending messages. You can write to
the Priority property of the AppDevice objects
containing the network variables in your connection to
establish which priority slot they will use.

This property does not apply to message tag connections, as
the priority flag is part of the explicit message and is
defined by the application sending the message.

Optimizing Connection Resources
Chapter 6 of this document describes how to create connections with LNS. This
procedure is fairly straightforward. However, to optimize the resources available to your
system when creating connections, there are many factors you should consider.

 LNS Programmer's Guide 152

Network Design Time
When designing a network, you should seek to achieve the most reliable solution, with
the most economic use of network and device resources. In this discussion, which deals
specifically with optimizing connection usage, network resources can be thought of as
network variable selectors, group identifiers, and channel bandwidth. Address table
entries and alias table space are the critical device resources.

When a connection is made, LNS first ensures that it complies with the LONWORKS
connection rules:

1. Standard network variables within a connection must have the same type.

2. All network variables within a connection (including user-defined network
variables) must have the same length.

3. At least one network variable in a connection must be an input network variable
and at least one of them must be an output network variable.

These three rules are fundamental to LONWORKS networks, and all network variable
connections must comply with these rules. There are, however, some additional
constraints that apply to connections in to LONWORKS networks. These constraints are:

4. Network variables within a connection must share one, and only one, network
variable selector, which must be unambiguous.

5. Multiple input and output network variables on a given device cannot share a
network variable selector. The same applies to non-polled network variables on
nodes earlier than firmware version 6, and to all polled output network variables.

6. Each network variable has one and only one network variable selector. In
addition, typically each network variable may have up to one address table entry
associated with it.

However, these final three constraints can be worked around with a planned approach,
as described in the following sections. Once LNS has approved the compliance of a
desired connection with these rules and constraints, it will implement the connection.

You can make sure your connections comply with the rules listed above by writing to the
properties of the ConnectDescTemplate assigned to the connection. Two key properties
are the AliasOptions and the BroadcastOptions properties. The following sections
describe how you can set these properties to maximize your network resources, while
complying with the rules and constraints introduced in this section.

Alias Options
The AliasOptions property determines how LNS will use network variable aliases in a
given connection. This property can be set to the default
lcaAliasForSelectorConflicts value, or to the lcaAliasForUnicasts value.

When set to the default lcaAliasForSelectorConflicts value, LNS will allocate one
or more input or output network variable aliases to overcome the selector conflicts that
are described in rules 4 to 6 above in an attempt to maintain all multicast connections.

The lcaAliasForUnicasts option will allow LNS to split a single multicast connection
into multiple unicast connections using one or more aliases to the primary output

LNS Programmer's Guide 153

network variable. This can be used to avoid joining or creating groups, as shown in
figures 7.1 and 7.2 later in this section.

For monitor and control applications, the benefit of this approach is that the monitoring
tool does not have to join the group. The existing group of nodes 1,2,3 will remain as it is,
and node 1 will also propagate network variable updates to the monitoring tool using a
unicast connection with Subnet/Node ID addressing. Each time the output network
variable is updated, two messages will be sent: one to the group connection, and one
using subnet node addressing. The benefit is that address table space on the monitoring
node is preserved (becoming a member of a group requires an address table entry to
accommodate the group membership information).

The lcaAliasForUnicasts option can also be used to avoid multicast connections. The
building automation example described later in this chapter introduces a problem that
can be avoided by splitting a multicast connection into multiple unicast connections.

Note that there are only 256 distinct groups that can be used for multicast addressing
per network, and that by using unicast addressing you can conserve group usage. Group
addresses also consume address table entries in both the receiving and transmitting
devices involved in the connection, and most application devices are limited to 15 address
table entries. Network Service Devices that use standard network interfaces are limited
to 15 address table entries for use with group addressing. However, unicast connections
may consume more address table entries on transmitting devices.

Typically, multiple unicast messages create extra network traffic compared to a single
multicast connection, as all network variable updates will require the transmission of
multiple messages onto the network. In contrast, a network variable update in a group
connection would only require one message to be sent that would be received by all
members of the group.

Note that you can use the AppDevice object’s AliasCapacity to determine the total
number of aliases supported by a device, and you can use the AliasUseCount property
to determine the number of aliases on the device that are already being used by existing
connections.

Broadcast Options
The BroadcastOptions property determines when a connection should use broadcast
addressing. This can be set to any of the following values: lcaBroadcastNever,
lcaBroadcastGroup, and lcaBroadcastAlways,

The lcaBroadcastGroup value requires some explanation. The lcaBroadcastGroup
value allows LNS to automatically use broadcast addressing when a multicast connection
is required, and no group identifiers are available. This requires that the connection use
a messaging service type acceptable for use with broadcast addressing, such as the
unacknowledged messaging service or the unacknowledged/repeat messaging service.

 LNS Programmer's Guide 154

Node 1

Node 2

Node 3 Node 1

Node 2

Node 3

 Figure7.1 Monitoring as member of a group Figure 7.2 Monitoring via network variable alias

Using the AliasOptions and BroadcastOptions Properties
Table 7.2 summarizes the effect of each possible combination of the values of the
BroadcastOptions and AliasOptions properties.

Table 7.2 AliasOptions/BroadcastOptions Combinations

AliasOptions Values BroadcastOptions
Values

lcaAliasForSelectorConflicts lcaAliasForUnicasts

lcaBroadcastNever This is the default combination
applied to all LNS connections.
This combination allows for
subnet/node addressing and
multicast group addressing, but
it does not allow the use of
broadcast addressing.

This combination splits a
single multicast connection
into multiple unicast
connections using subnet/node
addressing, and allocates
aliases to the output network
variable. If no aliases are
available, LNS will use group
addressing instead.

LNS Programmer's Guide 155

AliasOptions Values BroadcastOptions
Values

lcaAliasForSelectorConflicts lcaAliasForUnicasts

lcaBroadcastGroup If the connection is using the
acknowledged messaging service,
this combination allows for
subnet/node addressing and
group addressed multicast
connections. The
unacknowledged/repeat
messaging service also allows
subnet broadcast addressing to be
used, and the unacknowledged
messaging service further allows
the use of domain broadcast
addressing.

This combination splits a
single multicast connection
into multiple unicast
connections using subnet/node
addressing, and allocates
aliases to the output network
variable. If no aliases are
available, LNS will use group
addressing instead. If no
aliases and no group IDs are
available and the service type
is unacknowledged, LNS will
use subnet or domain wide
broadcast addressing. If no
aliases and no group IDs are
available and the service type
is unacknowledged/repeat,
LNS will use subnet
broadcasting if possible.

lcaBroadcastAlways This combination is
recommended if multicast
connections must be used, and
group addressing needs to be
avoided.

This combination splits single
multicast connections into
multiple unicast connections,
but uses broadcast addressing
for each of the unicast
connections. This has the
advantage of potentially re-
using address table space on
the sending node, at the
expense of network
bandwidth.

Example Connection Scenario: Building Controls
Figure 7.3 depicts a connection created to manage a lighting system in an office building.
The example includes 9 lamps in the ceiling, identified with letters A through J. There
are also 4 occupancy sensor devices identified with letters R through U, each connected
to the four surrounding lamps. Thus, occupancy sensors R and S necessarily are both
connected to lanterns B and E, sensors R and T share lamps D, E, and so on. This
common scenario presents an interesting problem.

 LNS Programmer's Guide 156

D

G

CA

E F

H J

B

R

T

S

U

Figure 7.3 Ceiling Lighting With Occupancy Sensors And Connections

Assuming each occupancy detector has only one relevant output network variable, a
multicast connection will be used to connect sensor R to lamps A, B, D and E. By default,
LNS will use a group to accomplish this. A group ID will be allocated, and one address
table entry will be used on each of the five participating devices.

When connecting the sensor S to lights B, C, E and F, another group will be created. This
requires another address table space on each of these five devices, and another group
identifier.

Each light (apart from the ones in the outermost row and column) will have to have four
address table entries to accomplish these connections. On a large floor with more than
four occupancy sensors, this will quickly exhaust available group IDs, and eventually the
integrator might fail to add new sensor/lamps segments due to a lack of available group
identifiers.

Broadcast addressing provides a way to avoid the use of group identifiers in this
situation. Most of the lights will reside in the same subnet as the occupancy sensors, and
the combination of subnet broadcast addressing and the unacknowledged/repeat
messaging service may also seem like an attractive option. However, in order to comply
with rule 6 of the connection rules introduced in this chapter, you would have to allocate
the same selector Z to both intersecting sensors (e.g. sensors R and S). This is required so
that the input network variables on lights B and E do not violate rule 6.

This has an unpleasant side-effect: each network variable update from, say, sensor R will
not only effect the lights A, B, D, and E, but also lights C and F. The effect is known as a
network variable leakage, in this case caused by a phenomenon known as intersecting
broadcasts. LNS can detect this problem beforehand, and will refuse to connect the
second sensor (and any further sensor) due to the detection of a leak in this scenario.

A solution to the problem is to use aliases for unicast connections, instead of using
multicast connections. Since each unicast connection can have its own unique selector,
the leakage problem will disappear, and the group identifier will remain available for
other connections.

This is accomplished at the expense of alias table space and address table space on the
occupancy sensor devices, and at the expense of network bandwidth. The different

LNS Programmer's Guide 157

unicast connections will be processed as separate transactions, causing more network
traffic than a single multicast update would have produced.

Solving Problems With Your Connection Scenarios
When planning connections for large systems, or for systems accommodating challenging
scenarios, the system integrator might still face difficulties when managing network
variable connections. This includes problems such as shortages of group identifiers,
aliases, and address table space. The following sections discuss some of these difficulties
and their possible remedies.

Shortage of Groups
A single domain has up to 256 distinct groups. However, each group identifier can be
used with multiple connections, as long as the connections remain unambiguous. This
technique, known as group overloading, allows for more than 256 groups to be used
based on the 256 distinct group identifiers. Your application can query the number of
group identifiers currently allocated in the network by reading the properties of the
NetworkResources object, which can be obtained from the System object’s
NetworkResources property. Consult the LNS Object Server Reference help file for
more information on this.

To conserve group usage, your application can do the following:

• Replace group connections using the acknowledged messaging service with multiple
unicast connections by setting the AliasOptions property to lcaAliasForUnicasts.
This requires sufficient address table and alias table space on the transmitting device.
You should note that splitting a multicast connection into multiple unicast connections
extends the total transaction time and the total packet count, compared to a single
multicast.

• You could combine group connections using the unacknowledged/repeat messaging
service into a single connection that uses the unacknowledged/repeat messaging service
and subnet broadcast addressing. However, all destination devices in the connection
must belong to the same subnet. The source device does not have to belong to the same
subnet. This configuration allows up to a 127 devices, the subnet maximum, to
participate in the multicast connection. You can also assign a subset of the nodes on a
given channel to a specific subnet to facilitate subnet broadcast addressing.

• Polling fan-in connections always require a group connection. Such connections should be
avoided. You should use polling strategies only after careful consideration.

• If group addressing is required (for example, for routing purposes), the existing
connections can be reconsidered. You might be able to identify an existing group (e.g. an
acknowledged multicast connection) that you could change to use the
unacknowledged/repeat messaging service with subnet broadcast addressing, or
individual unicast connections as described above, thus freeing group identifiers.

Shortage of Address Table Space
Addressing types with broad scopes generally consume fewer address table entries than
addressing modes that target only a single destination device. For example, if a device

 LNS Programmer's Guide 158

propagates all outgoing packets using domain broadcast addressing, the device only
needs one address table entry per target domain since LNS only supports a single
domain, plus one for turn-around connections directed to itself.

Therefore, a good way to conserve address table space is to avoid using group
connections, and instead build connections that use subnet broadcast addressing and the
unacknowledged/repeat messaging service. This strategy saves group identifiers, and
also creates an address table entry that is likely to be re-usable by other connections
originating from the same device.

However, the address table does not only accommodate the destination address. The
second set of data being kept in each address table entry is the set of transport properties
like the repeat count, repeat timer and the transmit timer. In summary, address table
shortages can be avoided or overcome by the following means:

• Use broadcast addressing whenever possible to obtain re-usable address table
entries.

• Avoid group connections (for the group membership information itself is kept in
the address table on each device that is a member of said group).

• Keep variations on transport properties to a minimum.

When groups must be avoided by splitting a group-addressed multicast connection into
multiple unicast connections as explained in the previous section, it requires alias table
space, and may also quickly consume a large amount of address table space on the sender
device. This is because each unicast connection may require its own address table entry.

One way to conserve address table entries is to combine the lcaBroadcastAlways and
lcaAliasForUnicasts values, as described in Table 7.2. This combination will help
avoid the effect of address table consumption resulting from the use of multiple unicast
connections instead of a single (group-addressed) multicast connection. In this case, LNS
will split the multicast connection into multiple unicast connections, but it will also use
broadcast addressing for each of these unicast messages. Assuming at least two targets
reside on the same subnet, this will result in re-use of address table entries.

Shortage of Aliases
Since aliases are defined at device development time, their number is finite and fixed. At
integration time, the tools available are those that re-gain aliases, and those that avoid
alias consumption.

Consider the case of a new, connection C2, and assume C2 requires an alias on a particular
device. Assume the device supports aliases, but all available ones are exhausted by
previously defined connections. These connections might contain a connection C1 that can be
disconnected and reestablished, using different connection policy preferences, resulting in
C1*. This re-designed connection must connect the same set of senders and recipients, but
may not require an alias on the device in question.

Summary of Resource Shortage Recommendations
Resource limitations cannot easily be overcome at integration time, but most limitations
can be overcome with some trade-off. If a network is characterized by three critical
resources (e.g. group IDs, address table entries and alias table space), shortages in one of

LNS Programmer's Guide 159

these pools can typically be overcome by allowing other types of resources to be
consumed.

For example, group IDs can be saved by using network variable aliases, and vice versa.
Preferring aliases over group addressing, for example, can also impact the third resource:
such a change might not only change the total number of address table entries required,
but can also redistribute these address tables entries differently among the devices that
participate in the connection.

Predictive Strategies
The previous section described ways to deal with resource shortages as they occur.
However, it is best to avoid such a shortage and the related repair work by planning
ahead. System integrators should establish an understanding of the characteristics of the
current connection scenario and of probable extensions to that scenario, and create
connections based on such analysis.

In most cases, the system integrator should know what other connections are to be
created in the future. This should include detailed knowledge about a particular number
of future connections, as well as an understanding of the characteristics of the complete
connection scenario.

For example, consider an office building. The building might consist of any number of
floors with several rooms on each floor. Most inner-room networks will be very similar (a
light, a switch, a thermostat, etc), and most connections will operate within the local
room. On the other hand, a small number of connections will affect many devices in many
rooms, such as the intruder or smoke alarming systems, the sun position sensor, etc.

Such a network might be best divided into a few building-wide segments, and a number
of very similar, if not identical, subsystems separated from the backbone and building-
wide segments by router devices. Thus, network traffic local to a room can be concealed
within that room. Also, because subnets cannot span routers, each room (or small
number of rooms) will have a local subnet, which allows inner-room connections to use
repeated messaging service and subnet broadcast addressing. This will preserve group
IDs for use with the building-wide segments.

The strategy detailed in the following flow chart avoids the use of group connections,
instead using subnet broadcast addressing for multicasts whenever possible. This
strategy is a generalization of the building control example.

 LNS Programmer's Guide 160

Start

Unicast?

Use acknowledged service with the transport
properties set to their default values. Set the
AliasOptions and BroadcastOptions
properties as follows:
AliasOptions = lcaAliasForSelectorConflicts,
BroadcastOptions = lcaBroadcastNever

Yes

All targets
on the same

subnet?

Yes

Use the unacknowledged/repeat service with the
default transport property values. Set the
AliasOptions and BroadcastOptions
properties as follows:
AliasOptions = lcaAliasForSelectorConflicts,
BroadcastOptions = lcaBroadcastAlways

Small number
of targets (Z)?

Yes

Use acknowledged service with the transport
properties set to their default values. Set the
AliasOptions and BroadcastOptions
properties as follows:
AliasOptions = AliasForUnicast
BroadcastOptions = BroadcastNever

Use the unacknowledged/repeat service with the
default transport property values. Set the
AliasOptions and BroadcastOptions
properties as follows:
AliasOptions = lcaAliasForSelectorConflicts
BroadcastOptions = lcaBroadcastGroup

No

No

No

Figure 7.4 Automated Predictive Connection Strategy

The decision-aid presented in this flowchart is deliberately vague in the last decision. If a
multicast connection targets a small number of devices on multiple subnets, it might be
best to break up the group-addressed multicast connection into multiple unicast
connections using aliases, thereby preserving groups. No guidance is given for the cut-off
figure Z. So, exactly how many aliases should be used by a single connection?

The answer to this question requires knowledge of the available aliases on the source
device (this defines the maximum for Z), and the number of similar connections sourced
from the same device. Generally speaking, it is advisable to keep Z fairly low, perhaps
less than 5, to limit the impact on the total transaction time introduced with the use of
aliases.

You application can read the AppDevice object’s AliasCapacity and AliasUseCount
properties to determine the used and available alias table entries on a given device.

LNS Programmer's Guide 161

Conclusion
Your LNS application should manage LONWORKS connections transparently, creating
reliable connections with minimum system overhead. However, awareness of what
connections will be added to a network in the future and of the network resources those
connections will consume is essential when creating a network with a large number of
connections.

 LNS Programmer's Guide 162

LNS Programmer's Guide 163

Chapter 8 - Network

Management: Advanced
Topics

This chapter describes advanced network management topics
such as how to manage a Network Service Device, how to
manage a network with multiple channels, how to create
custom device interface components, and how to use LNS to
change a network variable’s type.

 LNS Programmer's Guide 164

Managing Network Service Devices
This section describes special tasks you may need to perform when managing the
Network Service Devices on your network. This includes the following:

• Upgrading a Network Service Device

• Moving a Network Service Device

Upgrading a Network Service Device
In some cases, it may necessary to upgrade a Network Service Device when you change
its network interface. Generally, LNS will perform this upgrade automatically, as soon as
the system is opened.

However, you can prevent LNS from automatically upgrading the Network Service
Device your client application is using by setting the Flags property to
lcaFlagsManualNsdUpgrade. By default, this flag is not set. When the flag is set, you
will need to manually perform the upgrade by calling the Upgrade() method on the
AppDevice object that represents your client’s Network Service Device. There are
several factors you will need to consider when doing so. For more information, see
Network Interfaces and Network Service Devices on page 271.

Moving a Network Service Device
Whenever a device is moved from one channel to another, it affects the configuration of
that device, and possibly the configuration of the devices that are connected to it. If a
Network Service Device that is being used by a Local client application is physically
moved from one channel to another, the LNS application must tell the LNS Object Server
that the Network Service Device is being moved. This is done using the PreMove() and
PostMove() methods. Moving the Network Service Device will typically assign the
Network Service Device a new address corresponding to a subnet on the new channel,
recalculate transaction timers and update connections accordingly.

The procedure to follow when moving a Network Service Device is the same as if you
were moving any other application device. However, unlike moving a normal application
device, LNS will not be able to verify that the Network Service Device is on the proper
channel after the move. To move a Network Service Device, perform the following steps.
This procedure can be performed by a Local client application, a Lightweight client
application, or a Full client application. However, you cannot perform this procedure
with a Full client application if it is using the Network Service Device being moved.

1. Invoke the StartTransaction() and BeginSession() methods to
start a session.

MySystem.StartTransaction()
MySystem.BeginSession()

2. Obtain the AppDevice object that represents the Network Service Device
to be moved. Use the MyVni property to do so.

Set NSDAppDevice = MyNetwork.MyVNI

LNS Programmer's Guide 165

3. Call PreMove() on the AppDevice. When you call PreMove(), you must
specify the destination channel as the newChannelObject element. You
can optionally specify the destination subnet as the newSubnetObject
element. Echelon recommends that you leave the newSubnetObject
element empty, as LNS will then allocate the most suitable subnet for the
destination location:

NSDAppDevice.PreMove(channelObject, NOTHING)

NOTE: You can use the PreMove() method to move a device from one
subnet to another, without switching channels. In this case, specify the
device’s current channel as the newChannelObject element, and the
new subnet as the newSubnetObject element.

4. Physically move the Network Service Device.

5. End the current session, and start a new one. Then, call PostMove() on
the AppDevice to complete the operation.

MySystem.EndSession()
MySystem.BeginSession()
NSDAppDevice.PostMove()
MySystem.EndSession()
MySystem.CommitTransaction()

LNS applications that are designed for mobile use, such as a diagnostics tool for a service
technician, may find it difficult to follow the procedure described above. Typically, the
application will be used in location A, terminated, and started up in a different location B
later (the next service case). Since location B may not be known at the time when
location A is left, the tool may not be able to call PreMove() before physically moving the
device.

If the LNS application is a Local or Lightweight client application whose Network
Service Device has been moved, the calls to the PreMove() and PostMove() methods
can be performed after the network interface has been physically moved. If you are
performing this procedure with a remote Full client application, it is not necessary to call
the PreMove() or PostMove() methods in this case, as the move is performed
automatically when the system is opened. However, you must open the network via the
Networks collection (and not the RemoteNetworks collection). See the next section for
more details on this.

Remote Full Clients
There are several other factors to consider if a remote Full client application has been
using the Network Service Device you are moving. When a remote Full client application
opens a database using the Networks collection (as opposed to the RemoteNetworks
collection) and no other application currently using that Network Service Device has the
database open, the Network Service Device connects with the LNS Object Server. As part
of this connection process, the LNS Object Server determines which channel the Network
Service Device is using. If the Network Service Device had been created previously on a
different channel, which would be the case if it has been moved, the LNS Object Server
will move it to a new channel and assign it a new address, updating connections and
timers appropriately. Thus, the LNS Object Server handles the move automatically for
you in this case.

 LNS Programmer's Guide 166

You should note that when a Full client application opens a system using the Networks
collection (as opposed to the RemoteNetworks collection), the LNS Object Server
automatically determines the channel that the application’s Network Service Device is
attached to. However, the LNS Object Server cannot determine the correct channel if the
channel is one of several channels connected by routers that are configured as repeaters
or permanent bridges (i.e. the Class property is set to lcaRepeater,
lcaPermanentRepeater or lcaPermanentBridge). This is one of the reasons that
Echelon encourages the use of configured routers. However, in this scenario, you can set
the System object's RemoteChannel property before opening the System to specify the
channel that the Network Service Device is attached to.

It is also possible to move a Network Service Device operating as a remote Full client
using the PreMove() and PostMove() methods, as described in the Moving a Network
Service Device section. However, these methods interrupt the communication between
the LNS Server and remote Full client applications attached to the LNS Server.
Therefore, the use of these methods on a Network Service Device that is being used by
remote Full client applications is discouraged. However, you can move a Network Service
Device that is being used by a remote Full client application from one PC to another, as
described in the next section.

Using the PreReplace Method
Under normal circumstances, when a remote Full client application re-opens a network,
any network variables, connections and monitor sets created previously on the network
by the Full client will still be available, as long as the Network Service Device
configuration for the Full client still exists in the LNS network database. To ensure that
the Network Service Device is never deleted from the LNS database, it must be
configured as a permanent device on the network. You can do so by setting the
LcaNsdType property of the NetworkServiceDevice object to
lcaNsdTypePermanent. However, under some circumstances, the correlation between
the Full client and the configuration of the Network Service Device may be lost. In these
cases, you can use the PreReplace() method to re-associate the client with the correct
Network Service Device.

You will also need to use the PreReplace() method if you open a network remotely
from a new PC, and want that client to use a Network Service Device configuration that
was previously associated with a remote client running on another PC (effectively
moving the remote application and Network Service Device configuration from one PC to
another). An exception to this is if the original remote client used a standard network
interface, and you move the network interface to the new PC. In this case, LNS will
automatically associate the Network Service Device in the database with the client based
on the standard network interface’s Neuron ID.

You will also need to follow the procedure described below to re-attach a Network Service
Device to a network if the network has been removed from the RemoteNetworks
collection for the PC, and you are using a high performance (Layer 2/VNI) network
interface, or if you install a new network interface on the PC.

To re-associate a client with the correct network service device and re-attach the client to
the network, follow these steps:

1. Open the system, and get the Network Service Device to be attached to
the network from the NetworkServiceDevices collection.

LNS Programmer's Guide 167

Set MySystems = MyNetwork.Systems
Set MySystem = MySystems.Item(1)
MySystem.Open()
Set MyNSDCollection = MySystem.NetworkServiceDevices
Set MyNSD = MyNSDCollection.Item(“MyNSD”)

2. Call PreReplace() on the network to be attached to, with the selected
Network Service Device as the sourceNSD element.

MyNetwork.PreReplace(MyNSD)

3. Close the system, and release all references to the system.

MySystem.Close()

4. Close the network, and release all references to the network.

MyNetwork.Close()

5. Call Replace() on the network.

MyNetwork.Replace()

6. Re-open the network.

MyNetwork.Open()

Using Shared Media
A network is said to contain shared media if it shares channels with other independently
managed networks. For example, power line and RF networks often use shared media,
since all networks plugged into the power line (or transmitting over the radio) share the
same media. A network is said to contain private media if only one network
communicates using the channels. Media such as twisted pair is more easily isolated and
tends to be used as private media; however, you can still create a design where multiple,
independent networks share a twisted pair channel.

When determining whether your installation is shared or private, you should consider
whether you intend to share the media with another network, and whether the end-user
may add another network to the media in the future. For example, if the media is power
line, it is likely to be shared, now or in the future, even if you are installing only one LNS
network.

If you are installing a twisted-pair based stand-alone alarm system, then it will probably
always be private. However, networks intended for private use often use a shared high-
performance backbone, for example when connecting multiple buildings on a site. Subject
to the technology used for this shared channel, each network sharing this channel can
use private media, or become a shared media network. Generally, it is desirable to use
private media, due to more efficient network use and simplified installation and
maintenance. For shared backbones using a LONWORKS/IP channel, network design
should allow for one virtual LONWORKS/IP channel exclusive to each of the participating
networks, so that each network can maintain its private media status while sharing a
physical TCP/IP connection.

When creating a system that uses private media, you should set the system’s
InstallOptions property to lcaPrivateMedia. When creating a system on a shared
media system, set the InstallOptions property to lcaSharedMedia. Since there will

 LNS Programmer's Guide 168

be multiple networks sharing the media, you should also specify a unique domain ID for
your system. When the lcaSharedMedia option is selected and no domain ID is
specified, the LNS Object Server will select the 6-byte Neuron ID of its network interface
as the domain ID. This approach is recommended since it ensures that systems on shared
media will have unique domain IDs. Also, keep in mind the following:

• When using the engineered mode installation scenario, the Network
Service Device used to create the database may be different than the one
used to commission the system. You should either use the Neuron ID of
the network interface on the Network Service Device that commissioned
the system as the system’s domain ID, or set a unique 6-byte ID using
your own algorithm.

• In an installed system, if you replace a network interface (e.g. as part of a
repair operation), the new network interface will have a different Neuron
ID than the old one. As a result, you should not rely on the current
network interface’s Neuron ID to indicate the domain ID. Instead, you
should use the DomainId property of the System object to determine the
system’s domain ID.

• If your LNS application is used to install multiple networks, you should
not derive the domain ID from the network interface, as this would result
in domain ID duplication. Instead, you should use the Neuron ID of any
device that is to be installed into the respective network. Alternatively,
your application could choose a 6-byte random number to produce a
domain ID with a high probability of uniqueness.

In a system that uses shared media, the LNS Object Server disables background
discovery and device pinging. These activities are undesirable in a shared media system
for the following reasons:

• An LNS Object Server can discover devices that belong to a neighboring
system. Thus, discovery is not a reliable means of identifying devices to
install.

• If multiple LNS Object Servers are aware of the same device, their
communication with that device may create race conditions that result in
communication failures with the device, or improper configuration of the
device’s network image.

• The LNS Object Server background discovery and pinging tasks generate
periodic packets on the network. The traffic increases with the number of
LNS Object Servers issuing them. Since shared media also tend to be low-
speed media such as power line, this "extra" traffic can result in an
excessive load on the network.

 These guidelines should be followed when installing devices on a system that uses
shared media:

• Do not use find and wink installation. Since you cannot be assured that
devices you discover "belong" to your system, you should not use this
method to identify devices. This means that you should disable
background discovery by setting DiscoveryInterval property to 0.
This is done automatically when the InstallOptions property is set to
lcaSharedMedia.

• Use the confirmed service pin algorithm for device installation. When
using shared media, there is always a small chance that when a service
pin message is received, it is from a device in a neighboring system. The

LNS Programmer's Guide 169

confirmed service pin algorithm is designed to ensure that devices being
installed belong to the correct system. For more information on this, see
Neuron ID Assignment on page 115.

The above process should greatly minimize the already low probability of installing the
wrong device on a network. Another way to avoid this is to ask the user to explicitly enter
the Neuron ID of each device you install on the network. In all other cases, Echelon
recommends that you perform system-level verification after all connections have been
made when using shared media. If you discover that an incorrect device has been added
to your system, use the Replace() method to associate the AppDevice object with the
correct physical device, as described in Replacing Devices on page 131.

The InstallOptions property must be set before opening the system for the
first time. Setting this property at any other time has no effect. If you initially choose
private media, and decide you want to use shared media later, you can accomplish this by
following these steps:

1. Set the system’s DomainId property to match the Neuron ID of the
Network Service Device that the LNS Server PC is using.

2. Disable automatic discovery and pinging by setting the
DiscoveryInterval and PingIntervals properties to 0.

3. Disable automatic service pin registration by setting the system’s
RegisterServicePin property to False.

NOTE: A LONWORKS/IP channel can be considered private media if it is used by a single
network. For each network in a control system, create a separate LonWorks/IP channel
to avoid difficulties common to shared media control networks.

Managing Networks with Multiple Channels
LONWORKS networks may contain multiple channels, interconnected by routers or logical
repeaters. This section describes the considerations you need to make when managing a
network with multiple channels. There are several reasons that you might want to use
multiple channels on a network:

• The chosen networking medium for your network has physical layer
constraints, such as wire length or device count, and you want to create a
network that is larger than these constraints would allow if the network
only contained a single channel. Each channel is individually subject to
the physical-layer constraints, but the use of multiple channels allows
you to extend the distance or device count. Segments of a TP/FT-10
channel connected by a physical layer repeater are considered a single
channel.

• The traffic load on your network might approach the channel capacity for
your networking medium. Use of routers can partition the local traffic
from traffic that has to span multiple channels, which allows more
effective use of available bandwidth.

• You want to provide for fault tolerance in the event of a physical-layer
fault, such as a short or open circuit. Only devices on the faulty channel
would be affected by such faults. Devices on other channels are isolated
from the fault by the routers or logical repeaters.

 LNS Programmer's Guide 170

Overview of Router Types and Operation
A router connects two channels. Physically, a router contains two transceivers (one for
each channel it is connected to), and two processing modules. The transceivers and
processing modules receive packets from each channel, and decide whether or not to
forward the packet to the other channel. For more details on the functionality of
LONWORKS routers, see the LONWORKS Router User’s Guide.

A router counts as a device on each of its channels for the purposes of addressing and
physical layer design constraints, but not with respect to the LNS Device Credit limits
enforced by the LNS Object Server. For more information on LNS Device Credits, see
Chapter 13, LNS Licensing.

A network consisting of LONWORKS routers and channels must be completely connected,
i.e. it must provide a path for all devices to exchange messages with one another. With
the exception of redundant routers (see the Explicitly Controlling Subnet Allocation
section below), a network should have no logical loops created by routers. Physical loops
are allowed on a single channel when free topology transceiver channels are in use.
Physical loops between multiple channels may occur due to leakage on separate radio
frequency or power line channels. However, since no logical loops are allowed, two
messages having the same source and destination will always travel through the same
set of channels. Figure 8.1 displays an example topology with four channels that are
interconnected by three routers.

Channel 1 Channel 2

Router Router

Channel 3

Router

Channel 4

Figure 8.1 A Network with Multiple Channels

A LONWORKS router can be configured as one of four router types:

• A repeater forwards all valid packets received on one channel to the other
channel, without regard for address. Repeaters extend the physical reach

LNS Programmer's Guide 171

of a channel, while preventing corrupted packets from causing problems.
You should not confuse a router configured as a repeater with a physical
repeater. Repeaters cannot be used in topologies with physical loops, as a
given message could be repeated endlessly in this case. Physical
repeaters, in contrast, act as simple signal boosters and noise filters to
extend the physical reach of a channel, without providing any message
routing, validation or filtering.

• A bridge forwards a valid packet received on one channel to the other
channel if the packet is sent on a domain that the bridge belongs to. In a
single domain network, a bridge functions in the same manner as a
repeater. Bridges cannot be used in topologies with physical loops, as a
given message could be repeated endlessly in this case.

• A learning router forwards packets based on internal routing tables.
These tables contain one entry for each subnet in the application domain.
Learning routers have their routing tables in volatile memory so that
after they are reset, the router forwards packets addressed to all subnets
in the application domain. Whenever a learning router receives a packet
from one of its channels, it uses the source subnet ID to learn the
network topology. It then sets the corresponding routing table entries to
indicate that the subnet in question can be discovered in the direction
from which the packet was received.

As of LNS Turbo Edition, LNS does not support defining or modifying a
router as a learning router. If an application defines a router as a
learning router, or changes a routers class to lcaLearningRouter, the
LNS Object Server will automatically change the class to
lcaConfiguredRouter. See the next paragraph for a description of
configured routers, and the advantages they provide.

• A configured router forwards packets based on internal routing tables.
Configured routers have their routing tables in non-volatile memory. The
LNS Object Server configures and manages the routing tables based on
its knowledge of the network topology. In addition, a configured router
can be configured to selectively forward group-addressed messages when
it is known that all members of the group are on one side or the other of
the router. LNS manages the subnet and group forwarding tables in
configured routers automatically. This is the most efficient router
type to use, as it also allows the LNS Object Server to
automatically determine the channel each device is attached to,
supports physical loops, and reduces unnecessary network
traffic. Configured routers also support the use of redundant routers (see
the Explicitly Controlling Subnet Allocation section below), which provide
for redundant message paths.

In addition, you can define repeaters and bridges as permanent routers, meaning that
their types cannot be changed after they are installed. When a repeater or bridge router
is defined as permanent, the LNS Object Server knows that it will never be changed into
a configured router later, and it will allow the same subnet to exist on both sides of the
router. This is permitted by the router, since bridges and repeaters do not perform
forwarding based on subnet address.

If a router is defined as a non-permanent bridge or repeater, LNS will enforce the rule
that no subnet can appear on both sides of the router or bridge, even though the router
itself does not enforce this rule. This allows the LNS application to change the router
class later, without creating subnet conflicts. See the Explicitly Controlling Subnet

 LNS Programmer's Guide 172

Allocation section below for more information on the role of subnets and the rules
regarding their allocation.

With the exception of learning routers, you can use LNS to configure a LONWORKS router
as any of the router types described in this section. The most efficient router type to use
is the configured router, as this allows the LNS Object Server to automatically determine
the channel to which each device is attached, supports physical loops, and reduces
unnecessary network traffic.

Explicitly Controlling Channel Allocation
Unless you are using the ad hoc or automatic installation scenario, you should explicitly
define the channels in your system, and specify those channels as devices and routers are
added to the system. When using the ad hoc installation scenario, you can omit the
channel definitions and allow LNS to create channels for you. When using an automated
installation scenario based on device discovery mechanism, LNS automatically creates
each AppDevice with the correct channel assignment. When explicitly defining a
channel, you must specify the channel’s media type, by transceiver ID. The LNS Object
Server includes the ConstTransceiverId constant, which includes enumerations for
each of the possible transceiver types you can use for this purpose.

When LNS discovers a router, it will automatically create a channel for the far side, and
will choose an existing channel for its near side. The far side channel may in fact be a
duplicate of a user-defined channel. Assuming that your LNS application defined a
logical definition of this router and specified the user defined channels, this discrepancy
will be resolved when the router is commissioned, and LNS will delete the channel that it
had created for the router’s far side.

Explicitly Controlling Subnet Allocation
Subnets are the second component of the three-component LonTalk
domain/subnet/device addressing hierarchy. The subnet address is the level at which
routers decide whether or not to forward a packet, so the same subnet cannot appear on
both sides of a configured or learning router. By default, the LNS Object Server creates a
new subnet when a subnet is full, or when a non-permanent router is added to the
system. A subnet is considered full as soon as there are 127 devices assigned to it.

Your application can explicitly create subnets by calling the Add() method on the
system’s Subnets collection, and allocate a device to a specific subnet when the device is
added to the system with the AppDevices collection’s Add() method. Reasons for
controlling subnet assignment include directing the use of subnet broadcasting, and the
anticipation of topology changes.

If your application explicitly controls subnet assignment in this manner, certain
constraints must be observed. Figure 8.2 helps illustrate these concepts:

LNS Programmer's Guide 173

Channel 1,
Subnet A Channel 2, Subnet B

Configured
Router

Permanent
Bridge

Channel 3,
Subnet B

Configured
Router

Channel 4,
Subnets C and D

Figure 8.2 Subnets, Channels and Routers

1. Each channel can be assigned to more than one subnet. In figure 8.2,
Channel 4 is assigned to Subnets C and D.

2. Each subnet can only be assigned to a single channel, unless it is
assigned to multiple channels that are connected by permanent bridges
or permanent repeaters. In Figure 8.2, Subnet B spans Channels 2 and 3,
which are connected by a permanent bridge.

3. The final rule allows for redundant routing when using configured
routers. Redundant router topologies provide fault tolerance by providing
more than one routing path from one channel to another. They are also
required when all devices on a given channel may not be able to hear one
another (referred to as an ear shot problem), e.g. on a radio frequency
channel.

An example of a redundant routing topology is shown in Figure 8.3 below.
Both routers can forward packets originating on Subnet A and destined
for Subnet B. Any open circuit in either Channel 1 or Channel 2 still
leaves the network logically connected.

The redundant routing topology provides a backup means of
communication through redundant paths in the form of routers and the
resulting redundant packets. For every packet sent from a device on
Channel 1, Subnet A to a device on Channel 2, Subnet B, two packets will
be delivered (one packet from each of the configured routers). This will
occur for every point at which a backup router exists. Furthermore,
acknowledgments are multiplied.

For example, consider a network consisting of 3 channels that employs
redundant routers between each channel. Sending a single acknowledged
message that spans all three channels will result in 2 acknowledged
messages on the second channel, and 4 on the third channel. Each of

 LNS Programmer's Guide 174

these four messages will be acknowledged, resulting in 8
acknowledgements on the second channel and 16 on the first channel.
This situation worsens when authenticated messaging is used, since an
authenticated transaction consists of 4 separate messages (the initial
message, a challenge, a reply, and an acknowledgment). In the example
given above, a single acknowledged authenticated message would result
in 4 acknowledged messages on the third channel, 16 challenges on the
first channel, 64 replies on the third channel and 256 acknowledgments
on the first channel. Echelon recommends that you limit the number of
redundant routers created by the user, and warn the end user of the
effects of setting up redundant routers.

Figure 8.3 Redundant Routing Topology

Installing and Configuring Routers
When installing and configuring routers, your application can treat routers in much the
same way as application devices, using the steps described in Chapters 5 and 6 of this
document. Each Subsystem has a Routers collection containing the Router objects that
represent your network’s routers, just as each Subsystem has an AppDevice collection
containing the AppDevice objects for the network.

Routers have a similar set of properties (e.g. State, Location) and methods (e.g. Add,
Commission) as application devices. And as with application devices, they can be
identified using the automatic discovery, service pin, or manual entry methods described
in the Neuron ID Assignment section on page 115. When using manual entry, enter the
near router side's Neuron ID (if connected to the network). The near router side is the
side that is closest to the Network Service Device. When commissioning a router while
not connected to the network (or connected but unable to communicate with the near side
of the router), the Neuron IDs of both router sides must be entered.

Note that routers do not support the confirmed service pin installation protocol as it is
described in Chapter 6, as they do not support the Wink() method. Instead, you should
use the Reset() method for confirmation of router devices when using the confirmed
service pin installation of s router. This will not work on routers that do not provide a
visual or audible reset notification (such as a Reset LED).

When you call the Routers collection’s Add() method to define a router in the LNS
database, you can define its router class by specifying the routerType element. The
most efficient router type to use is the configured router (lcaConfiguredRouter). This
allows the LNS Object Server to automate most topology management tasks. The LNS
Object Server also automatically allocates and assigns new subnets as needed. As was
discussed in the previous section, the application can manually control subnet allocation

LNS Programmer's Guide 175

if required. Note that after you created a Router object, you can change its class by
writing to its Class property.

When using redundant routers, the LNS Object Server cannot automatically determine
the channel to which the far side is attached. In this case, your application must
explicitly specify the channel within the Add() invocation.

Installation Order
The order in which routers and devices are added to the LNS database is important. The
LNS Object Server must be able to communicate with a device or router in order to
configure it. If the LNS Object Server is always attached to the same single channel, then
the routers on that channel must be installed and configured before application devices
and routers on any channel adjacent to the router can be installed. In this way, the
installed network fabric grows outward from the LNS Object Server’s network
attachment point. Full client applications must also be able to communicate with the
LNS Object Server to operate. A continuous physical and logical path must therefore
exist between each Full client application’s network interface, and the network interface
on the LNS Server PC. If multiple network segments are to be installed before the
complete network topology is established, then the network interface on the LNS Server
PC may be moved from segment to segment as it is installed.

Installing Devices With Multiple Channels
As devices (and routers) are installed on a network with multiple channels, it is
necessary to determine the channel on which each device resides. When using the
engineered mode installation scenario, you must always specify the device’s channel
when you add the device to the LNS database. This allows the LNS Object Server to
allocate a logical address, compute routing tables, and calculate connection timers for the
device. When the device is commissioned, the LNS Object Server will verify, as best it
can, that the device is indeed attached to the expected channel. If it is not, an exception
will be thrown.

When devices are being added to the LNS database as they are discovered (automatic
installation), or as they are physically installed (ad hoc installation), LNS will
automatically determine the device’s channel using the channel isolation process
described in the next section. If the system exclusively uses configured routers, LNS can
always determine the device’s channel.

If LNS cannot uniquely determine a device’s channel, it will use one of the possible
channels as the channel when commissioning the device. If the system uses repeaters or
permanent bridges, your application should always specify the Channel to use when you
create each AppDevice object, since the channel reported by the LNS Object Server may
be incorrect.

Channel Isolation Process
When you add a device to the LNS database, LNS uses the channel isolation process to
determine the channel the device should use, or to validate that the channel you have
assigned to the device is valid.

All router types other than repeaters perform address translation on messages with a
source subnet equal to 0, translating the source subnet to be the subnet of the router side

 LNS Programmer's Guide 176

that first receives the message. The channel isolation process takes advantage of router
source address translation by examining the translated source subnet, and thus
identifies the source channel. In some cases LNS may have to temporarily place the
device in the unconfigured state in order to perform channel isolation.

LNS can only isolate down to a logical channel segment when routers configured as
repeaters or permanent bridges are used. A logical channel segment is a set of channels
connected to each other by routers configured as repeaters or permanent bridges. This is
because:

• Repeaters do not perform source translation.

• Subnets may legally span permanent bridges.

In both cases, it is not possible for LNS to determine which router within the logical
channel segment received a packet first. Installing a device on the wrong channel, but on
the correct channel segment, may have negative consequences. Routing will not be
affected, but LNS may calculate the layer 4 timers incorrectly, which could result in
unnecessary retries or message failures. As a result, Echelon recommends the use of
configured routers, as LNS will always be able to identify the correct channel when
configured routers are used. If this is not possible, the installer should make sure to
install each device on the correct channel, or use the PreMove() and PostMove()
methods to move any devices to their correct channel.

Note that if you are running a remote Full client application that is on a logical channel
segment containing routers of class lcaRepeater, lcaPermanentRepeater or
lcaPermanentBridge, you will need to set the RemoteChannel property prior to
opening the system to specify the channel the client is using.

Resolving Installation Failures
There are a few cases where attempts to register, add, or commission a device on a
network with multiple channels may fail or have negative side effects. This usually
happens when you attempt to install a device that was previously configured as part of
another network without deconfiguring it. You should also consider the following:

• If the device to be installed is configured on a subnet in the system’s domain that
violates the logical topology (i.e. a subnet on wrong side of configured or learning
router), LNS may need to force the device to the unconfigured state to
communicate with it. Thus, accessing a configured device may result in the
device becoming unconfigured.

• If learning routers are in use and the scenario described in case 1 is attempted,
the operation may result in the learning router not routing messages to the
conflicting subnet. The learning router must be reset to restore normal operation.
This is why it is important to use the PreMove() method during device
movement when learning routers are in the system as described later in this
chapter.

• If a device violates the logical topology (as in case 1) and is authenticated, it will
not be possible to install it. This is why it is important to use the PreMove()
method during authenticated device movement as described later in this chapter.

• If a device has the same address as the network interface on the LNS Server PC,
then the LNS Object Server will not be able to communicate with that device,

LNS Programmer's Guide 177

since the target device ignores all messages received from a device with its own
subnet/device ID. In this case, the device must be deconfigured. You cannot use
LNS to do so, since the LNS Object Server will not be able to communicate with
the device. So, you must choose another means to do so, e.g. by using a tool that
is configured on a different domain. During the development process, Echelon
recommends that you choose a different system domain ID to avoid this condition
following the creation of a new network database. Note that the LNS Object
Server uses a large node ID (e.g. 127) to help prevent this problem from
occurring.

Moving Devices and Routers Between Channels
At some point, you may need to move the devices on your network from one channel to
another. To do so, follow this procedure:

1. Call StartTransaction() to start a transaction, and then call
BeginSession() to start a session.

MySystem.StartTransaction()
MySystem.BeginSession()

NOTE: If you are only moving a single device, you do not need to use a
session, but for optimal performance you should use a transaction to
perform these steps, unless the device uses authentication.

2. Obtain the device to be moved from the AppDevices collection. Or,
obtain the router to be moved from the Routers collection. The example
code in this section applies to an application device:

Set MyAppDevice = MyAppDevices.Item(“node12”)

3. Call PreMove() on the device selected in step 2. You must specify the
new channel for the device with the newChannelObject element, and
you can optionally specify the new subnet for the device with the
newSubnetObject element. Note that if you do not specify the new
channel for the device, LNS will attempt to automatically determine the
channel using the channel isolation process described previously in this
chapter.

MyAppDevice.PreMove(TargetChannel, NOTHING)

4. Physically move the device to its new location. Repeat steps 2, 3 and 4 for
each device being moved.

5. If any of the devices being moved use authentication, end the current
session, commit the transaction, and then start a new transaction and
session. Then, call PostMove() on each device to complete the
operation.

If MyAppDevice.AuthenticationEnabled Then
 MySystem.EndSession()
 MySystem.CommitTransaction()
 MySystem.StartTransaction()
 MySystem.BeginSession()
End If
MyAppDevice.PostMove()
MySystem.EndSession()
MySystem.CommitTransaction()

 LNS Programmer's Guide 178

If you move a previously configured device to a new network, and the device has network
management authentication enabled, LNS will not typically be able to install the device.
In addition, if the device has the same network address as your client’s Network Service
Device, LNS will not be able to communicate with the device.

There are special considerations you need to make when moving a Network Service
Device. For more on this, see Moving a Network Service Device on page 164. In addition,
moving a configured device from one channel to another, or to a new network, may cause
communication problems between the device and the network. For more information on
this, see the previous section, Resolving Installation Failures.

Removing Routers
While managing your network, it may be necessary to remove routers from the network.
To do so, invoke the Remove() method on the applicable Routers collection as follows:

Dim MyRouters As LcaRouters
Set MyRouters = MySubsystem.Routers
MyRouters.Remove("Router1")

There are several things you should consider before removing a router. LNS allows
routers to be removed if the removal causes channels to become disconnected, but only if
doing so does not break the path between connections, permanent monitor sets, or
disrupt communication between the LNS Server and a remote Full client application.

If you attempt to remove a router and the operation fails because it would break a
connection, the NS#73 lcaErrNsInsufficientRouters exception will be thrown. If
you attempt to remove a router and the operation fails because it would break a
permanent monitor set, the NS#181 lcaErrNsInsufficientRtrsForMnc exception
will be thrown. If you attempt to remove a router and the operation fails because it would
break communication between the LNS Server and a remote Full client, the NS#182
lcaErrNsInsufficientRtrsForNsi exception will be thrown.

Using Dynamic Device Interfaces
As described in the Device Interfaces section in Chapter 6, each LONWORKS device
contains a device interface that represents the device’s functionality. The device interface
consists of network variables, configuration properties and LonMark Functional Blocks.

In LNS, network variables, configuration properties and LonMark Functional Blocks are
represented by NetworkVariable, ConfigProperty, and LonMarkObject objects.
The device interface as a whole is represented by the Interface object, which can be
accessed through the Interface property of the AppDevice object associated with the
device.

In some cases, there may be a need to modify the functionality provided by a device
interface. For example, some controller devices are used to control other devices. The
number of components required on a controller device’s interface is often an attribute of
the network configuration (i.e. how many devices it is controlling). Ideally, the resources
on these controllers could be allocated dynamically to fit the changing requirements of a
given network as devices are added to it. As a result, LNS Turbo Edition features
additional support for dynamic interface components, meaning that you can use LNS to
add custom interface components to devices that support dynamic interfaces. This section
describes how you can use those features.

LNS Programmer's Guide 179

Accessing a Device Interface
A device interface is represented by an Interface object. The Interface objects
contained by an application device include the device’s main interface, as well as custom
interfaces that have been added to the device dynamically. You can access the main
interface of a device through its Interface property. The main interface contains the
device interface installed with the device by its manufacturer, as well as all the network
variables and LonMark Functional Blocks defined in the custom interfaces that have
been added to the device. Main interfaces are static interfaces that cannot be modified
directly.

You can access and modify each of the custom interfaces that have been added to a device
through the device’s Interfaces property. Figure 8.4 shows the relationship between
the device’s main interface and its custom interfaces. Note that the network variables
and LonMark Functional Blocks included in the custom interfaces are also included in
the device’s main interface.

Main
Interface

Custom
Interface #1

Custom
Interface #2

Custom
Interface #3

FBs

NVs

FBs

NVs

FBs

NVs

FBs

NVs

CPs

Figure 8.4 Device Interfaces

Table 8.1 describes some of the properties of the Interface object. Some of these
properties apply to the device’s interfaces as a whole. Consult the LNS Object Server
Reference help file for a complete list, and for more extensive descriptions of each
property.

Table 8.1 Interface Object Properties

Property Description

ConfigProperties This property contains the Interface object’s
ConfigProperties collection (i.e. the
configuration properties included in the interface
that apply to the device as a whole).

 LNS Programmer's Guide 180

Property Description

ConfigPropertiesAvailable This property indicates whether configuration
property definitions are available for the specified
Interface. If True, then configuration property
definitions for the Interface have been uploaded
from the device or imported from an external
interface file. If False, the device may not
implement any configuration properties at all, or
LNS has not yet been able to determine whether
the device implements configuration properties.

DynamicLonMarkObjectCapacity This property indicates the number of dynamic
LonMarkObjects you can add to the custom
interfaces on this device, including those you have
already added.

DynamicMessageTags This property contains the Interface object’s
collection of dynamic message tags (i.e. the message
tags that have been added to the interface).

LonMarkObjects This property contains the Interface object’s
LonMarkObjects collection (i.e. the
LonMarkObject objects included in the interface).

MaxNVSupported This property specifies the maximum number of
network variables (static or dynamic) that the
Interface object can contain.

MessageTags This property contains the Interface object’s
collection of static MessageTag objects (i.e. the
message tags originally included in the interface).

NetworkVariables This property contains the Interface object’s
NetworkVariables collection (i.e. the network
variables included in the interface).

StaticNVCount This property indicates the number of static
network variables on the Interface object.

SupportDynamicNVsOnStaticLMOs This property indicates whether static
LonMarkObject objects on the device’s interfaces
support the addition of dynamic network variables.

You can use LNS to add custom interfaces to devices that support dynamic interfaces
using the Interfaces property. And depending on what other types of dynamic objects
it supports, you can also modify its interfaces by adding or removing objects from its
NetworkVariables, LonMarkObjects, and MessageTags collections, as described in
the following sections.

LNS Programmer's Guide 181

Adding a Custom Interface to a Device
You can create custom interfaces on any device that supports dynamic network variables,
dynamic message tags, or dynamic LonMark Functional Blocks. To create a custom
interface on a device, follow these steps:

1. Access the device’s collection of custom interfaces.

Dim MyInterfaces as LcaInterfaces
Set MyInterfaces = MyAppDevice.Interfaces

2. Call Add() to add a new custom interface to the device. Specify the name
of the interface by filling in the interfaceName element. The name of
each custom Interface on a device must be unique. If you specify a
name that is already being used on the device containing this collection,
the LCA:#3 lcaErrDuplicateKey exception will be thrown.

Dim MyNewInt as LcaInterface
Set MyNewInt = MyInterfaces.Add(“NewInt”, NOTHING)

NOTE: You can specify an existing Interface object as the
sourceInterfaceObj element. If you do so, the new Interface object
will be created with the same NetworkVariables collection as the
Interface referenced as the sourceInterfaceObj. If the
sourceInterfaceObj is NOTHING, as in this example, an empty
Interface object will be created.

3. You can now add dynamic network variables, LonMark Functional Blocks
and message tags to the new Interface as you desire, provided that the
device supports them. For more information on these tasks, see the
following sections.

Adding LonMark Functional Blocks To a Custom Interface
A LonMark Functional Block represents a collection of network variables and
configuration properties on a device that perform a related function. For example, a
digital input device with four switches could contain one LonMark Functional Block for
each switch. For general information on LonMark Functional Blocks, and how you can
use them to configure and manage a device, consult the LonMark Interoperability
Guidelines, which can be downloaded from the web at
http://www.lonmark.org/products/guides.htm.

In LNS, LonMark Functional Blocks are represented by LonMarkObject objects. Some
custom device interfaces support dynamic LonMark Functional Blocks, which means that
you can add them to the interface manually. You can determine if an interface supports
dynamic LonMark Functional Blocks by reading the interface’s
DynamicLonMarkObjectCapacity property. If the device interface supports dynamic
LonMark Functional Blocks, the DynamicLonMarkObjectCapacity property will be set
to a value greater than 0. Note that you cannot add LonMarkObjects to a device’s main
interface, although the DynamicLonMarkObjectCapacity property of that Interface
may be set to a non-zero value.

To add a dynamic LonMarkObject to a device, follow these steps:

1. Access the custom interface that you want to add the LonMarkObject to.
If necessary, create a new custom interface, as described in Adding a

http://www.lonmark.org/products/guides.htm#guidelines

 LNS Programmer's Guide 182

Custom Interface to a Device on page 181.

Dim Interfaces as LcaInterfaces
Dim MyNewInt as LcaInterface
Set MyInterfaces = MyAppDevice.Interfaces
Set MyNewInt = MyInterfaces.Item(“NewInt”)

2. Make sure that the interface supports the addition of dynamic
LonMarkObject objects by reading the Interface object’s
DynamicLonMarkObjectCapacity property. If it does, acquire the
Interface object’s LonMarkObjects collection.

Dim LonMarkFunctionalBlocks as LcaLonMarkObjects
Set LonMarkFunctionalBlocks = MyNewInt.LonMarkObjects

3. Call the Add() method on the LonMarkObjects collection to create a
new LonMarkObject object. The Name and ProgammaticName
properties of the new LonMarkObject object will be set to match the
name you specify as the fbName element. You should note that the name
assigned to the LonMarkObject objects on each device must be unique. If
you attempt to use a name that is already used on the device, the
operation will fail, and the LCA#3 lcaErrDuplicateKey exception will
be thrown.

Dim MyLMFB as LcaLonMarkObject
Set MyLMFB = LonMarkFunctionalBlocks.Add(“new LMFB”,500)

Configuring LonMark Functional Blocks
You can assign existing dynamic network variables to dynamic LonMark Functional
Blocks using the AssignNetworkVariable() method, and you can unassign them
using the UnassignNetworkVariable() method. Alternatively, you can create new
network variables that will be automatically assigned to the network interface using the
procedure described in the Creating Dynamic Network Variables section on page 183.

This may be useful when working with sophisticated generic controller devices. Consider
the case of a generic device that controls an entire home. As features such as a new set of
lighting scene controllers are added to the home, related LonMark Functional Blocks or
network variables can be added to the generic home controller device as needed.

You can also move a dynamic LonMarkObject from one custom interface on a device to
another using the MoveToInterface() method.

Adding Message Tags To a Custom Interface
As of LNS Turbo Edition, you can add dynamic message tags to any device that supports
monitor sets, and use those message tags in conjunction with message monitor points to
send explicit messages from that device to a group of devices, as with static message
tags.

For example, consider the case of a Network Service Device. Network Service Devices do
not contain static message tags. However, you can add dynamic message tags to the
AppDevice object that represents a NetworkServiceDevice. Once you have done so,
you could connect the message tag to the devices you want to send messages to.
Following that, you could create a permanent message monitor point on the Network

LNS Programmer's Guide 183

Service Device that specifies the new dynamic message tag as its monitor target
(targetDevice element). You could then open the monitor set, and use the message
monitor point to send messages to the devices connected to the message tag. The
advantage of this approach, as opposed to creating message monitor points for each
device, is that a single message can be sent to all devices using group or broadcast
addressing, as determined by the connection description used to create the connection.
For more details on how to accomplish these tasks, see Adding Message Monitor Points to
a Monitor Set on page 195.

Not all Interface objects support dynamic message tags. If you attempt to add a
message tag to a message tag collection on a main interface, or a custom interface on a
device that does not support dynamic message tags, the LCA#119
lcaErrInterfaceNotModifyable exception will be thrown.

To add a dynamic message tag to a device, follow these steps:

1. Access the custom interface on the device that you want to add the
message tag to. If necessary, create a new custom interface, as described
in Adding a Custom Interface to a Device on page 181.

2. Access the custom interface’s DynamicMessageTags collection.

Dim MyMessageTags as LcaMessageTags
Set MyMessageTags = MyInterface.DynamicMessageTags

3. Call the Add() method to add a new message tag to the collection.

Dim MyNewTag as LcaMessageTag
Set MyNewTag = MyMessageTags.Add(“newName”)

4. For information on using message tags and message monitor points for
monitor and control operations, see Chapter 9, Monitor and Control.

Creating Dynamic Network Variables
You can add network variables to custom interfaces on devices that support dynamic
network variables, to dynamic LonMarkObject objects, or to static LonMarkObject
objects that support dynamic network variable assignment. If you attempt to add a
network variable to a static LonMarkObject or a device’s main interface, then the
LCA#119 lcaErrInterfaceNotModifyable exception will be thrown, unless the
device supports the addition of dynamic network variables to static LonMarkObject
objects. You can determine whether a LonMarkObject is static or dynamic by reading
the object’s IsDynamic property.

You should note that network variables contained within the same custom Interface
objects must have unique user names (Name property). In addition, some devices, such as
the i.LON 100 Internet Server, require that all network variables within the device have
unique programmatic names (ProgammaticName property). If you attempt to assign a
duplicate user name or programmatic name to a network variable on such a device or
interface, the operation will fail, and the LCA#132 lcaErrUniqueNvNameRequired
exception will be thrown.

To add a network variable to a custom interface or to a LonMarkObject, follow these
steps:

1. Access the custom interface you want to add the network variable to. If

 LNS Programmer's Guide 184

necessary, create a new custom interface, as described in Adding a
Custom Interface to a Device on page 181. Or, access the LonMarkObject
you want to add a network variable to.

Dim MyInterfaces as LcaInterfaces
Dim MyNewInt as LcaInterface
Set MyInterfaces = MyAppDevice.Interfaces
Set MyNewInt = MyInterfaces.Item(“newInt”)

2. Access the interface or LonMarkObject object’s NetworkVariables
collection.

Dim myNVs as LcaNetworkVariables
Set myNVs = MyNewInt.NetworkVariables

3. Call Add() to add a new network variable to the collection. For
descriptions of the parameters you need to specify, see the LNS Object
Server Reference help file.

Dim NewNV as LcaNetworkVariable
Set NewNV = myNVs.Add(“nv3”,nvType, nvDirection, _
 nvOptions, memberNumber,manufacturerAssigned)

Note that you can also use the MoveToInterface() method to move dynamic network
variables from one interface to another. This may be useful if you want to remove a
dynamic network variable from a device’s main interface. You cannot use the Remove()
method to remove a network variable from NetworkVariables collection on a device's
main interface, even if it is a dynamic network variable. However, you can use the
MoveToInterface() method to move a dynamic network variable from the main
interface to a custom interface. Once you have done so, you could remove the network
variable from the custom interface, and its removal would be propagated to the main
interface.

Tracking Custom Interface Changes
You can use the OnNodeIntfChangeEvent event to keep track of when a device’s
interface is modified. The OnNodeIntfChangeEvent event is fired whenever a device's
interface is changed. Depending on the type of interface change, the
OnNodeIntfChangeEvent will be generated as the changes are made to the LNS
database, or as they are propagated to the physical device. You can register your
application for this event by calling the BeginNodeIntfChangeEvent() method on the
System object.

For more information on this, see the LNS Object Server Reference help file.

Changeable Network Variable Types
As of LNS Turbo Edition, each NetworkVariable object contains a TypeSpec property.
The TypeSpec property provides access to a TypeSpec object. LNS uses the TypeSpec
object to identify the base type a network variable should use. You can write new values
to the properties of the TypeSpec object to change the network variable’s type, if the
network variable supports changeable types.

To change a network variable’s type, follow these steps:

LNS Programmer's Guide 185

1. Check that the network variable supports changeable types. You can read
the NetworkVariable object’s ChangeableTypeSupport property to do
so. If the ChangeableTypeSupport property is set to
lcaNvChangeableTypeSdOnly or lcaNvChangeableTypeSCPT, the
network variable supports changeable types.

2. Access the network variable’s TypeSpec object through the TypeSpec
property.

3. Set the program ID, scope, and name of the new type you want to use by
writing to the ProgramId, Scope, and TypeName properties of the
TypeSpec object.

4. Optionally, invoke the Lookup() method on the TypeSpec object to
make sure that the program ID, scope and name entered in step 3
reference a valid type.

5. Read the IsComplete property to make sure that the TypeSpec object is
complete. This step is generally not necessary when changing a network
variable’s type, unless you are creating a new network variable or
changing a network variable’s type from a type that was received from
another network variable. Consult the LNS Object Server Reference help
file for more information on the IsComplete property.

6. Pass the modified TypeSpec object back to the TypeSpec property of the
network variable. At this point, LNS will use the values entered in step 2
to find the definition of the type in the resource files, and assign values to
the Index, Length, and ObjectType properties of the TypeSpec object.
If LNS is unable to find the resource file for the program ID entered in
step 2, the LCA#154 lcaErrUnavailableResourceFiles exception
will be thrown. If LNS finds the resource file but is unable to find the
type name referenced in step 2, the LCA#155
lcaErrNotFoundInResourceFiles exception will be thrown. Be sure
that the network variable can support the new type before assigning it. If
the length of the new type is too long for the network variable, then the
LCA#156 lcaErrTypeLengthTooLong exception will be thrown.

SCPTnvType Configuration Properties
If the ChangeableTypeSupport property is set to lcaNvChangeableTypeSCPT, then
the network variable supports changeable types via a SCPTnvType configuration
property. This is the recommended LonMark-compliant way to implement changeable
type network variables on a LONWORKS device. If this method is supported, LNS will
automatically update the value of the SCPTnvType configuration property when the
network variable’s TypeSpec property is changed. If the single SCPTnvType
configuration property is declared for multiple network variables, changing the type of
one of those network variables changes the type of all of them.

However, the device can refuse the desired type. For instance, a device could implement
a generic PID controller that supports a wide range of numeric data types (float, signed
long, etc) for the process value, setpoint, and control value network variables. Changing
these network variables to a non-numeric type such as a string (e.g. SNVT_asc_string)
may not be meaningful in the context of the application. The device will report this error

 LNS Programmer's Guide 186

condition using its NodeObject LonMark functional block, and will not change the
network variable type.

This presents a problem when configuring a device in engineered mode. When you
change network variable types in the definition phase while the application is not
attached to the network, and then create network variable connections based on the
desired, new, network variable type, these connections may malfunction if one of the
participating devices rejects a type change request once it has been set online. Echelon
recommends that integrators only use device-specific plug-in software to change network
variable types, as such software has built-in knowledge of the network variable types
that a given device supports. In turn, you should design your LNS application so that it
does not support changing network variable types to any arbitrary type, at least not
without warning the user of these implications.

You must also be aware that changing the type of a single network variable can have a
snowball effect. Some devices are designed to implement multiple network variables of
changeable type, but with the restriction that some or all of these network variables
must have the same type. For instance, the aforementioned generic PID controller could
be implemented to support a wide range of numeric network variable types, but could
require that setpoint, control and process value network variables always use the same
network variable type. Unfortunately, LNS has no method to determine if such a
relationship exists. Consequently, changing one network variable may leave the related
network variables with the inappropriate type and format selection. However, the device
manufacturer can ensure that a set of network variables always have the same type by
using a single SCPTnvType for all of them.

Likewise, a configuration property of an inheriting type could apply to a changeable type
network variable. Configuration properties of inheriting types derive their type from the
network variable they apply to. For example, configuration properties for default,
minimum, or maximum values are often defined as to be of an inheriting type. Such
configuration properties will also change their data type if the type of the changeable
type network variable changes, and the related data formatting may change.

To control all these issues with minimum error, Echelon recommends that integrators
only use device-specific plug-in software to change network variable types, and that you
design your LNS application with these implications in mind.

If you design a generic LNS application that may be used to configure or install any
arbitrary device type, Echelon recommends that you implement LNS director
functionality in your application. An LNS director application can detect and use plug-in
software, and can therefore delegate the delicate task of network variable type changes
(and similar delicate device configuration tasks) to specialized plug-in software. See
Chapter 12 of this document for more information on LNS director applications.

LNS Programmer's Guide 187

Chapter 9 - Monitor and

Control

This chapter describes the LNS features you can use to
monitor and control the devices on your network. Monitor and
control is the process of reading and writing network
variables, and sending explicit messages.

 LNS Programmer's Guide 188

Introduction to Monitor and Control
By definition, device applications only have a local view of the network. They know what
data they receive from the network (usually without regard to which devices produce the
data), and they know what data they produce (usually without regard to which devices
will consume the data).

However, in most control systems there is a need for an application that provides an
overall view of the system. For example, in a process control system, the operator
interface provides users with supervisory control over the entire process, and displays
the current status of the system. Or, in a building control system, there might be
multiple control panels from which users can view the current setting of any point in the
system, and change the value of any set point in the system. You can use the monitor and
control services provided with LNS for these purposes.

Monitoring is the process of fetching and receiving data from devices on the network,
while controlling is the process of writing data to those devices. Both involve subordinate
tasks such as data formatting, connecting devices, and address change tracking (to
ensure that data is not lost due to address changes). In a LONWORKS network, data can
be retrieved from application devices using network variable connections, or fetched from
devices with regularly scheduled polling messages and explicit polls. Basic formatting is
accomplished automatically by processing network variable types according to predefined
formatting files. Additional formatting or processing can be performed by the network
application.

You can use monitor sets to implement monitor and control operations in your LNS
application. A monitor set is a collection of monitor points. A network variable monitor
point represents a single network variable on a device that is being monitored by an LNS
application, and you can use the monitor point to read and write that network variable’s
value. You can use a message monitor point to send an explicit message to a device with
your LNS application, or to receive messages sent by application devices to your LNS
application.

As of LNS Turbo Edition, there are two kinds of monitor sets:

• Permanent monitor sets. Permanent monitor sets are stored persistently in the
LNS database, and can be used in multiple client sessions.

• Temporary monitor sets. Temporary monitor sets are not stored persistently in
the LNS database, and are only used in a single client session.

Depending on how you need to monitor devices, you may want to use either type of
monitor set. If you are writing a device plug-in application, and only want to monitor the
values of the network variables on the device while you configure it, a temporary monitor
set will suffice, as you will only need to monitor the device for a short period of time.

On the other hand, you might be managing a very large network with hundreds or even
thousands of devices, and you need an application to monitor and control those devices
persistently. In that case, you should use permanent monitor sets. You could define a
group of monitor sets as you install the network, and then use them to monitor and
control your devices when your network begins operation.

At some point, you may also want to read or write the value of single network variable
without monitoring its value beforehand. You could do this by directly reading or writing

LNS Programmer's Guide 189

to the value of the network variable, without creating a monitor point to represent the
network variable.

This chapter describes the LNS features you can use to perform these monitor and
control operations. Table 9.1 describes each section included in this chapter. Echelon
recommends that you review the entire chapter before developing your application, so
that you are aware of all the monitor and control capabilities LNS provides.

Table 9.1 Monitor and Control

Section Description

Temporary and Permanent
Monitor Sets

This section describes the major differences
between temporary and permanent monitor sets.

Creating Monitor Sets This section describes how to create a temporary or
permanent monitor set.

Managing Monitor Sets This section describes the initial steps you need to
take to use a monitor set for monitor and control
operations after you have initially created it. This
includes the following:

1. Add network variable and message monitor
points for the devices you plan to monitor to the set.

2. Define the monitoring options for the set.

Opening and Enabling
Monitor Sets

This section describes the steps you need to take to
open a monitor set and enable it for monitor and
control operations.

Using Network Variable
Monitor Points

This section describes several ways you can use
network variable monitor points to monitor and
control a network.

Using Message Monitor Points This section describes how you can use message
monitor points to monitor and control a network.

Developing Remote Monitor
and Control Applications

This section provides guidelines you will need to
follow when writing remote applications for monitor
and control.

System Management Mode
Considerations

This section describes how the system management
mode impacts the behavior of some monitor and
control operations.

Directly Reading and Writing
Network Variables

At some point, you may want to read or write the
value of single network variable without monitoring
its value beforehand. You can do this by directly
reading or writing to the value of the network
variable through a DataPoint object, without
creating a monitor set. This section describes how
you can do so.

 LNS Programmer's Guide 190

Section Description

Using Configuration Properties
In a Monitor and Control
Application

In some cases, you may want to write an
application to control the values of the
configuration properties on the devices on your
network. This section provides guidelines to follow
when doing so.

Data Formatting This section describes how your application can
format the data it obtains through monitor points
and data points.

Temporary and Permanent Monitor Sets
As of LNS Turbo Edition, there are two separate types of MonitorSet objects:
permanent MonitorSet objects, which can be used in multiple client sessions, and
temporary MonitorSet objects, which can only be used in a single client session. This
section describes when you should use each type.

Permanent Monitor Sets
Each Network object contains a MyVNI property, which returns an AppDevice object
representing your application’s Network Service Device. You can use this AppDevice to
access all the MonitorSet objects that are stored in the LNS database for your Network
Service Device (i.e. the monitor sets that have been created for applications running on
your PC). Echelon recommends that you use the MyVNI property to access MonitorSet
objects when you need to create or modify the configuration of the MonitorSet objects.
To access MonitorSet objects for actual monitor and control operations, you should use
the CurrentMonitorSets property of the Network object.

The CurrentMonitorSets property returns a collection of all the MonitorSet objects
on the network that are currently stored in your Network Service Device. This will be
useful if you have created monitor sets while the system management mode is set to
lcaMgmtModeDeferConfigUpdates. Although those monitor sets exist in the LNS
database (and can be accessed through the MyVni property), they will not be
commissioned into the Network Service Device, and cannot be enabled or used for
monitor and control operations until the system management mode is set to
lcaMgmtModePropagateConfigUpdates. When the system management mode is set to
lcaMgmtModePropagateConfigUpdates, the new monitor sets will be commissioned
into your Network Service Device and added to the CurrentMonitorSets collection,
and the CurrentMonitorSets collection will contain the same collection of monitor sets
as the MyVni collection.

The collection accessed through the CurrentMonitorSets property allows access to all
the monitor sets you can currently use on a network. The collection accessed through the
MyVni property allows access to these monitor sets, and those not yet commissioned into
your Network Service Device. All the monitor sets obtained through the
CurrentMonitorSets property are runtime monitor sets, meaning that you can open
them and enable them for monitoring operations. However, you cannot change their
configuration when you access them through the CurrentMonitorSets collection. As
noted previously, you should use the collection obtained through the MyVni property
when you need to change the configuration of your client’s local MonitorSet objects.

LNS Programmer's Guide 191

Use permanent monitor sets when you need to create monitor points that will be used
often, or in multiple client sessions. If you need monitor points that will only be used
once, or in a single client session, you should use temporary monitor sets.

Temporary Monitor Sets
Temporary monitor sets are opened automatically by LNS as they are created, and can
only be accessed from the client that created them. They cannot be accessed from the
permanent MonitorSets collections described in the previous section. When a client
releases a temporary monitor set, or when the client session in which a temporary
monitor set was created ends, the temporary monitor set and all the monitor points it
contains are deleted automatically.

If you need to create a group of monitor points that you can use in multiple client
sessions or that you intend to use multiple times, you should use the permanent monitor
sets described earlier in this chapter. However, temporary monitor sets take less time
and network resources to create. This may be useful if you only need to monitor a device
while you are installing it on a network, or if your application will not need to monitor
the device on a regular basis.

The properties and methods that can be used on temporary monitor sets and temporary
monitor points are generally the same as those that can be used on permanent monitor
sets and permanent monitor points. However, there are a few exceptions to this rule.

Temporary MonitorSet objects cannot be created or used by Independent client
applications. The Open() and Close() methods have no effect on temporary
MonitorSet objects, because temporary MonitorSet objects are opened as soon as they
are created, and closed as soon as the client application releases them, or the session in
which they were created ends. For more information on creating monitor sets, see the
Creating Monitor Sets section later in this chapter.

You should also note that temporary monitor sets are not enabled as they are opened.
You must explicitly enable temporary monitor sets and temporary monitor points with
your application using the applicable Enable() method. For this purpose, the
MsgMonitorPoint object now includes an Enable() method. For more information on
enabling monitor sets and monitor points, see Opening and Enabling Monitor Sets on
page 211.

The DefaultOptions properties of MsgMonitorPoint and NvMonitorPoint objects in
temporary monitor sets are not accessible. The values applied to these properties are
taken from the temporary monitor set’s MsgOptions or NvOptions properties. For more
information on monitor and control options, see the Managing Monitor Sets section later
in this chapter.

Monitor points in temporary monitor sets do not support the use of connection
description templates to define certain monitoring options, as monitor points in
permanent monitor sets do. As a result, you must set the connDesc element to NULL
when you use the Add() method to add a message monitor point or network variable
monitor point to a temporary monitor set.

There is one other variance you should note when using temporary MonitorSet objects.
Network variable monitor points in temporary monitor sets cannot be automatically
bound to the monitoring node. This means that the UseBoundUpdates property of all
temporary monitor sets and monitor points must be set to False. For more information

 LNS Programmer's Guide 192

on the UseBoundUpdates property, see The Implicit Bound Network Variable
Monitoring Scenario on page 218.

Creating Monitor Sets
The first step when creating a monitor and control application is to create a monitor set.
To create a permanent monitor set, follow these steps:

1. Open the ObjectServer, Network, and System you plan to monitor and
control, as described in Chapter 4, Programming an LNS Application.

2. Get the AppDevice object contained in the Network object's MyVNI
property. This contains a collection of the MonitorSet objects that are
stored in the LNS database for your client’s Network Service Device. This
is the collection you should use when creating and configuring a
permanent monitor set.
Set VniAppDevice = MyNetwork.MyVNI
Set MyMonitorSets = VniAppDevice.MonitorSets

3. Invoke the MonitorSets collection's Add() method. This method takes
the name of the new monitor set as an argument.
Set newMonitorSet = MyMonitorSets.Add("Monitor Set 1")

 At this point, the new monitor set is closed. You will need to open and
enable it before using it for monitor and control purposes, as described
later in this chapter.

4. Set the properties of the new MonitorSet object, including the
NvOptions property, the MsgOptions property, and the Tag property.

You can use the NvOptions property, and the MsgOptions property to
set the default monitoring options that will be applied to the monitor set.
For more information on monitoring options, see Setting Monitoring
Options on page 198.

You can use the Tag property to store any information required to quickly
and efficiently identify the monitor set, such as the name of the device
you plan to monitor with the set. See the LNS Object Server Reference
help file for more information on the Tag property, and the other
properties of the MonitorSet object.

To create a temporary monitor set, follow these steps:

1. Open the ObjectServer, Network, and System you plan to monitor and
control, as described in Chapter 4, Programming an LNS Application.

2. Call the CreateTemporaryMonitorSet() method on the Network
object. The method will return the new temporary monitor set.

Dim MyTempSet as LcaMonitorSet
Set MyTempSet = MyNetwork.CreateTemporaryMonitorSet()

 At this point, the new monitor set is open, but it has not been enabled.
You will need to enable the monitor set before you use it for monitor and
control purposes. This is described later in the chapter.

3. Set the properties of the new MonitorSet object, including the

LNS Programmer's Guide 193

NvOptions property, the MsgOptions property, and the Tag property.

You can use the NvOptions property, and the MsgOptions property to
set the default monitoring options that will be applied to the monitor set.
For more information on monitoring options, see Setting Monitoring
Options on page 198.

You can use the Tag property to store any information required to quickly
and efficiently identify the monitor set, such as the name of the device
you plan to monitor with the set. See the LNS Object Server Reference
help file for more information on the Tag property, and the other
properties of the MonitorSet object.

After you have created a monitor set, you can add network variable and message monitor
points to it. The monitor points will represent the network variables and application
messages to be monitored and controlled with the set. See the next section, Managing
Monitor Sets, for more information on this.

Managing Monitor Sets
After you have created a temporary or permanent monitor set, you should perform the
following tasks:

1. Add network variable and message monitor points to the set. For more
information on these tasks, see Adding Network Variable Monitor Points
to a Monitor Set on page 193, and Adding Message Monitor Points to a
Monitor Set on page 195.

2. Configure the monitoring options for the set. These options determine the
behavior of the set while it is enabled. For more information, see Setting
Monitoring Options on page 198.

Generally, the way you will perform each task is the same for temporary monitor sets
and permanent monitor sets. Exceptions to this are noted as each task is described.

Adding Network Variable Monitor Points to a Monitor Set
Each MonitorSet object contains an NvMonitorPoints property. The
NvMonitorPoints property returns a collection of the network variable monitor points
in the monitor set. You can use network variable monitor points to monitor the devices
on your network. To create a network variable monitor point, follow these steps:

1. Open the ObjectServer, Network, and System you plan to monitor and
control, as described in Chapter 4, Programming an LNS Application.

2. Get the device containing the network variable to be monitored:

Set MySubsystems = MySystem.Subsystems
Set MySubsystem = MySubsystems.Item("Floor3.Room7")
Set MyAppDevices = MySubsystem.AppDevices
Set MyAppDevice = MyAppDevices.Item("Thermometer")

3. Get the network variable(s) you will be monitoring:

Set MyInterface = MyAppDevice.Interface
Set MyNVs = MyInterface.NetworkVariables
Set MyNV = MyNVs.Item(“nvoTemperature”)

 LNS Programmer's Guide 194

Set MyNV2 = MyNVs.Item(“nvoAlarm”)

4. Repeat steps 2 and 3 until you have acquired all the network variables
you want to monitor, and get the monitor set that will contain the
monitor points for these network variables. You should have first created
a monitor set for this purpose, as described in the Creating Monitor Sets
section. Remember that when adding network variable monitor points to
a permanent monitor set, or when making any persistent changes to a
permanent monitor set’s configuration, you should access the monitor set
through the MyVni property.

Set MonVNI = MyNetwork.MyVNI
Set MySets = MonVNI.MonitorSets
Set MySet = MySets.Item(“Monitor Set 1”)

5. Access the monitor set’s NvMonitorPoints collection, and use the Add()
method to add network variable monitor points to the monitor set. Each
time you call Add(), you will pass in the network variable to be
monitored by the new point as the nv_target element.

Echelon recommends that you use transactions when creating permanent
network variable monitor points, as this considerably reduces the time
required to create the monitor points. Transactions should not generally
be used when creating temporary monitor points since they are not stored
in the LNS database, and so starting a transaction would unnecessarily
slow down the process. For more information on using transactions with
LNS, see Using Transactions and Sessions on page 64.

MySystem.StartTransaction()
Dim NvMp1 as LcaNvMonitorPoint
Dim NvMp2 as LcaNvMonitorPoint
Set NvMonitorPoints = MySet.NvMonitorPoints
Set NvMp1 =NvMonitorPoints.Add("nvMP1", MyNV, nothing)
Set NvMp2 =NvMonitorPoints.Add("nvMP2", MyNV2, nothing)

6. Set the properties of the new NvMonitorPoint object. Two properties
you should initially set are the Tag property and the DefaultOptions
properties. You can use the DefaultOptions property to set the default
monitoring options that will be applied to the new monitor point each
time it is enabled. See the LNS Object Server Reference help file for more
information on the Tag property, and for a complete list of the properties
of the NvMonitorPoint object. For more information on monitoring
options, see Setting Monitoring Options on page 198.

For permanent monitor points, you should perform these tasks in the
same transaction that the monitor points were created in. When you have
finished, commit the transaction to the database.

 MySystem.CommitTransaction()

7. You can now enable the monitor point for monitor and control operations.
For more information on this, see Opening and Enabling Monitor Sets on
page 211.

LNS Programmer's Guide 195

Adding Message Monitor Points to a Monitor Set
Each MonitorSet object contains a MsgMonitorPoints property. The
MsgMonitorPoints property returns a collection of the message monitor points in the
monitor set.

There are two ways to use message monitor points. You can create a message monitor
point to send messages to (and receive messages from) a single device on the network.
Or, you can create a message monitor point to send messages to a group of device
simultaneously by connecting those devices to your application’s Network Service Device.
To do so, you will need to create a dynamic message tag on the Network Service Device.
This section describes both procedures.

To create a message monitor point to send explicit messages to (and receive message
from) a single device on the network, follow these steps:

1. Open the ObjectServer, Network, and System you plan to monitor and
control, as described in Chapter 4, Programming an LNS Application.

2. Echelon recommends that you use transactions when creating permanent
message monitor points, as this considerably reduces the time required to
create the monitor points. For more information on using transactions
with LNS, see Using Transactions and Sessions on page 64.

MySystem.StartTransaction()

3. Get the device that you plan to send explicit messages to, or that you plan
to receive messages from. Note that this cannot be the Network Service
Device containing the monitor set you plan to add the message monitor
point to.

Set MySubsystem = MySubsystems.Item(“Floor1.Room3”)
Set MyAppDevices = MySubsystem.AppDevices
Set MyAppDevice = MyAppDevices.Item("Vent")

If you only plan to send explicit messages to the device with the message
monitor point, proceed to step 6. If you plan to receive messages from the
device, you need to perform steps 4 and 5 to connect a message tag on the
device to your application’s Network Service Device.

4. Get the MessageTag object on the device that will be used to send the
updates to the monitor and control application:

Set MyInterface = MyAppDevice.Interface
Set MyMessageTags = MyInterface.MessageTags
Set MyTag = MyMessageTags.Item("mTag1")

5. Obtain the msg_in message tag on your application’s Network Service
Device, and connect it to the message tag selected in step 4.

Set MonVni = MyNetwork.MyVNI
Set NsdInterface = MonVni.Interface
Set NsdMessageTags = NsdInterface.MessageTags
Set NsdMsgIn = NsdMessageTags.Item(“msg_in”)

MyTag.AddTarget (NsdMsgIn)
MyTag.Connect()

6. Get the monitor set you will use to monitor the messages. You should

 LNS Programmer's Guide 196

have first created a monitor set for this purpose, as described in Creating
Monitor Sets. Remember that when adding monitor points to a monitor
set, you should access the set through the MyVni property.

Set MyMonSets = MonVNI.MonitorSets
Set MyMonSet = MyMonSets.Item(“Monitor Set 1”)

7. Access the monitor set’s MsgMonitorPoints collection, and call the
Add() method to add a message monitor point to the monitor set, passing
in the AppDevice selected in step 3 as the targetDevice element.

Dim MyMsgPoints As LcaMsgMonitorPoints
Dim MyMP As LcaMsgMonitorPoint
Set MyMsgPoints = MyMonSet.MsgMonitorPoints
Set MyMP =MyMsgMonitorPoints.Add("msgp1",MonVni,nothing)

8. Set the properties of the new MsgMonitorPoint object. Two properties
you should initially set are the Tag property and the DefaultOptions
properties. You can use the DefaultOptions property to set the default
monitoring options that will be applied to the new monitor point each
time it is enabled. See the LNS Object Server Reference help file for more
information on the Tag property, and for a complete list of the properties
of the MsgMonitorPoint object. For more information on monitoring
options, see Setting Monitoring Options on page 198.

9. If you are started a transaction in step 2, commit the transaction to the
database.

MySystem.CommitTransaction()

10. You can now enable the monitor point in monitor and control operations.
For more information on this, see Opening and Enabling Monitor Sets on
page 211.

To create a permanent message monitor point to send explicit messages to multiple
devices simultaneously, follow these steps. Note that you cannot use a temporary
message monitor points to send explicit messages to multiple devices simultaneously:

1. Open the ObjectServer, Network, and System you plan to monitor and
control, as described in Chapter 4, Programming an LNS Application.

2. Echelon recommends that you use transactions when creating permanent
message monitor points, as this considerably reduces the time required to
create the monitor points. Transactions should not generally be used
when creating temporary monitor points since they are not stored in the
LNS database, and so starting a transaction would unnecessarily slow
down the process. For more information on using transactions with LNS,
see Using Transactions and Sessions on page 64.

MySystem.StartTransaction()

3. Create a dynamic message tag on your application’s Network Service
Device. You will use this message tag to connect the Network Service
Device to the application devices you want to send messages to. For
instructions on creating dynamic message tags, see Adding Message Tags
To a Custom Interface on page 182.

4. Get the device that you plan to send explicit messages to with the new

LNS Programmer's Guide 197

message monitor point.

Set MySubsystem =MySubsystems.Item(“Third Floor Room 7”)
Set MyAppDevices = MySubsystem.AppDevices
Set MyAppDevice= MyAppDevices.Item("Vent")

5. Get the msg_in message tag on the application device selected in step 4,
and connect it to the dynamic message tag you created on the Network
Service Device.

Set MyInterface = MyAppDevice.Interface
Set MyMessageTags = MyInterface.MessageTags
Set MyTag = MyMessageTags.Item("msg_in”)

NsdDynamicMessageTag.AddTarget(MyTag)

6. Repeat steps 4 and 5 for all the application devices you want to send
explicit messages to. Then, call Connect() to instantiate the connection.

NsdDynamicMessageTag.Connect()

NOTE: You can only add 25 targets to a connection each time you call the
Connect() method. If you need to add more than 25 targets to the
connection, you should add 25 targets and call Connect() to create the
connection. Then, add the remaining targets, and call Connect() again.
See Chapters 6 and 7 for more detailed information on creating
connections.

7. Access the monitor set’s MsgMonitorPoints collection, and call the
Add() method to add a message monitor point to the monitor set. Pass
the message tag created on the Network Service Device
(NsdMessageTag) as the targetDevice element.

Dim MyMsgPoints as LcaMsgMonitorPoints
Dim NewMsgPoint as LcaMsgMonitorPoint
Set MyMsgPoints = MonSet.MsgMonitorPoints
Set NewMsgPoint = MyMsgPoints.Add _
 ("msgP1",NsdDynamicMessageTag, nothing)

8. Set the properties of the new MsgMonitorPoint object. Two properties
you should initially set are the Tag property and the DefaultOptions
properties. You can use the DefaultOptions property to set the default
monitoring options that will be applied to the new monitor point each
time it is enabled. See the LNS Object Server Reference help file for more
information on the Tag property, and for a complete list of the properties
of the MsgMonitorPoint object. For more information on monitoring
options, see Setting Monitoring Options on page 198.

9. If you started a transaction in step 2, commit the transaction to the
database.

MySystem.CommitTransaction()

10. You can now enable the monitor point in monitor and control operations.
For more information on this, see Opening and Enabling Monitor Sets on
page 211.

 LNS Programmer's Guide 198

Setting Monitoring Options
Each MonitorSet object, and each individual MsgMonitorPoint and NvMonitorPoint
object, contains properties that allow you to determine the behavior of the monitor set or
monitor point while it is monitored and controlled. These properties are listed and
described in the following sections.

• MonitorSet.NvOptions and MonitorSet.MsgOptions – Each
MonitorSet object contains an NvOptions property, and a MsgOptions
property. The NvOptions property provides access to an
NvMonitorOptions object that stores the default monitoring options
that are applied to all network variable monitor points as they are added
to the monitor set. The MsgOptions property provides access to a
MsgMonitorOptions object that stores the default monitoring options
that are applied to all message monitor points as they are added to the
monitor set.

Changes to the NvOptions and MsgOptions properties are not managed
retroactively, meaning that monitor points that have already been added
to a monitor set are not affected when these properties are changed.
However, for network variable monitor points, there are a few exceptions
to this rule. See NvMonitorOptions Object on page 200 for more
information on this.

• NvMonitorPoint.DefaultOptions and
MsgMonitorPoint.DefaultOptions – Each NvMonitorPoint and
MsgMonitorPoint object in a monitor set contains a DefaultOptions
property. The DefaultOptions property provides access to a
MsgMonitorOptions object (or NvMonitorOptions object) that stores
the default monitoring options that are applied to that particular monitor
point. These are the options that will be used for that monitor point when
the monitor set is opened, and a monitoring session begins.

When a monitor point is added to a monitor set, the DefaultOptions for the
point are set to match to the settings stored in the NvOptions or
MsgOptions objects for the monitor set. You can modify the monitor point’s
DefaultOptions property if you want that monitor point to have different
default options than the rest of the set. However, if you change these
properties while the monitor set is open, the changes will not be reflected
until the monitor set is closed and re-opened.

NOTE: Because temporary monitor points are only used in a single client
session, their DefaultOptions are not accessible. If you attempt to acquire
the DefaultOptions property through a temporary monitor point, the
LCA:#161 lcaErrNotAllowedOnTemporaryObject exception will be
thrown. All temporary monitor points are created with the default options
defined for the monitor set via the NvOptions and MsgOptions properties.

• NvMonitorPoint.CurrentOptions and
MsgMonitorPoint.CurrentOptions – Each NvMonitorPoint and
MsgMonitorPoint object in a monitor set contains a CurrentOptions
property. The CurrentOptions property provides access to a
NvMonitorOptions object (or MsgMonitorOptions object). The
CurrentOptions are set to match the values of the monitor point’s
DefaultOptions object every time the monitor point is enabled.

LNS Programmer's Guide 199

If you do not want a monitor point to use those default options during a
particular monitoring session, you can change the options that will be used
by writing to its CurrentOptions. All changes made to the
CurrentOptions property take effect immediately. However, when the
monitor set is closed, these changes will not be saved as the default options to
be used the next time it is opened. The default options for each monitor point
must be maintained using the DefaultOptions properties.

NOTE: For permanent network variable monitor points, the default values
for some options properties (ServiceType, Retries, Priority) are
controlled by the connection description specified when the monitor point is
created. This is described in more detail in Table 9.1 in the next section.

Network Variable Monitor Point Options
The previous section of this document described the different ways to access an
NvMonitorOptions object, and how each one affects a monitor set or individual network
variable monitor point. To recap, you should follow these steps when setting the
monitoring options for your network variable monitor points:

1. Set the defaults for the monitor set by writing to the NvOptions property
of the MonitorSet object. The following code sample sets the default
values for the ReportByException, GenerateInitialFetch, and
PollInterval properties.

Set NvMonitorPointOptions = MySet.NvOptions
NvMonitorPointOptions.ReportByException = True
NvMonitorPointOptions.GenerateInitialFetch = True
NvMonitorPointOptions.PollInterval = 5000
Set MySet.NvOptions = NvMonitorPointOptions

For descriptions of the properties of the NvMonitorOptions object, see
NvMonitorOptions Object on page 200.

2. If you do not want a network variable monitor point in the set to use the
default options established in step 1, you can change its default options
by writing to its DefaultOptions property. Note that these changes will
not be applied to a monitor point that is in an open monitor set until the
monitor set is closed and re-opened.

Echelon recommends that you set the DefaultOptions property in the
same transaction that you create the network variable monitor point
whenever possible. The following code sample sets the default values for
a network variable monitor point’s ResetPollingIfUpdated and
SuppressPollingIfBound properties.

Set NvMonitorPointOptions = MonitorPoint.DefaultOptions
NvMonitorPointOptions.ResetPollingIfUpdated = True
NvMonitorPointOptions.SuppressPollingIfBound = False
Set MonitorPoint.DefaultOptions = NvMonitorPointOptions

NOTE: Because temporary monitor points are only used in a single client
session, their DefaultOptions are not accessible. If you attempt to
acquire the DefaultOptions property through a temporary monitor
point, the LCA:#161 lcaErrNotAllowedOnTemporaryObject
exception will be thrown. All temporary monitor points will be enabled
with the default options selected in step 1.

 LNS Programmer's Guide 200

3. When a monitor set is opened, each network variable monitor point in the
set will use the default options established in either step 1 or step 2. If
you want a network variable monitor point to use different options during
a given monitoring session, you can do so by writing to the
NvMonitorPoint object’s CurrentOptions property after the monitor
session has started (i.e. the monitor set has been opened). Remember that
these changes take effect for the current session only.

The following code sample sets the current values for a network variable
monitor point’s PollInterval property.

Set NvMonitorPointOptions = NvMonPoint.CurrentOptions
NvMonitorPointOptions.PollInterval = 1500
Set MonitorPoint.CurrentOptions = NvMonitorPointOptions

NOTE: When performing these steps, remember that the NvOptions,
DefaultOptions and CurrentOptions properties are not passed by
reference. When you modify an NvMonitorOptions object returned by any of
these properties, the changes will not take effect until the modified object is
passed back to the NvOptions, DefaultOptions or CurrentOptions
property of the applicable monitor set or monitor point.

NvMonitorOptions Object
The three properties mentioned in this section (NvOptions, DefaultOptions,
CurrentOptions) that apply to network variable monitor points all provide access to an
NvMonitorOptions object. The NvMonitorOptions object contains a set of properties
that define the behavior of network variable monitor points when they are enabled.

Table 9.2 lists and describes these properties. The default values listed in Table 9.2 are
the defaults that are initially applied to the NvMonitorOptions object accessed through
a monitor set’s NvOptions property.

LNS Programmer's Guide 201

Table 9.2 NvMonitorOptions Object

Property Name Description

Authentication This property is not used. If the UseBoundUpdates
option for a monitor point is set to True, the monitor
point’s authentication state is determined by the
UseAuthenticationFlag property of the
ConnectDescTemplate specified when the monitor
point was created. Otherwise, the authentication state is
set based on the monitored network variable’s current
authentication state.

GenerateInitialFetch This property determines whether the values of the
network variable monitor points in the monitor set will
be fetched when the monitor set is enabled (True). If this
property is set to False, the value of each network
variable monitor point in the set will not be updated
until a network variable update for that point is received
due to an explicit fetch, bound update, or expired poll
interval.

Default Value: False

PollInterval This property determines the interval to use when
polling the network variables being monitored by this
set.

Default Value: 1000 ms*

*The default value for this property for temporary
monitor sets is set to match the value of the
DsPollInterval property.

 LNS Programmer's Guide 202

Property Name Description

Priority This property determines whether or not priority
messaging will be used when sending network variable
updates during the current monitoring session. If True,
priority messaging will be used.

Setting this property through the NvOptions property of
a permanent monitor set, or through the
DefaultOptions property of a permanent network
variable monitor point, does not have an effect. The
default priority setting for each permanent network
variable monitor point is established by the
UsePriorityFlag property of the
ConnectDescTemplate specified when the network
variable monitor point was created.

You cannot set this property through the
DefaultOptions property of a temporary network
variable monitor point, as the DefaultOptions
properties of all temporary monitor points are not
accessible. However, you can set this property through
the NvOptions property of a temporary monitor set to
determine the default priority setting that will be
applied to all network variable monitor points as they
are added to the set.

Remember that you can set this property through the
CurrentOptions property of a permanent or temporary
network variable monitor point to determine whether or
not priority messaging will be used when sending
network variable updates during the current monitoring
session.

Default Value: For permanent monitor sets, the default
value for this property is False. The default value for
temporary monitor sets is set to match the value of the
DsPriority property.

ReportByException This property determines if network variable update
events for this set will only be reported when the value of
a network variable changes. If True, LNS will only
report update events to your application when the value
of a network variable changes. For example, if the value
of a network variable is polled three times and the value
does not change until the third poll, only the third poll
will be reported to your application via an update event.

Network variable update events are described in more
detail later in this chapter.

Default Value: For permanent monitor sets, the default
value for this property is True. The default value for
temporary monitor sets is set to match the value of the
DsReportByException property.

LNS Programmer's Guide 203

Property Name Description

ResetPollingIfUpdated Use this property to determine whether or not the poll
interval for each network variable monitor point in the
set will be reset whenever a new value for the point is
received, either via a bound update or a read operation.
If True, the poll interval will be reset.

For example, consider a case where the poll interval is
set to 100 seconds. If this property is set to True and a
new value for a monitor point is received, LNS would
reset the polling cycle and wait another 100 seconds to
poll that network variable again.

If this property is set to False, and LNS receives a new
value 35 seconds after the most recent poll, LNS would
not reset the polling cycle. The next poll would occur 65
seconds later.

Default Value: True

Retries This property determines the number of retries to use for
acknowledged, request/response messages, and for
repeat service messages during the current monitoring
session.

Setting this property through the NvOptions property of
a permanent monitor set, or through the
DefaultOptions property of a permanent network
variable monitor point, does not have an effect. The
default retry count for each permanent network variable
monitor point is established by the RetryCount
property of the ConnectDescTemplate specified when
the network variable monitor point was created.

You cannot set this property through the
DefaultOptions property of a temporary monitor
point, as the DefaultOptions properties of all
temporary monitor points are not accessible. However,
you can set this property through the NvOptions
property of a temporary monitor set to determine the
default retry count that will be applied to all network
variable monitor points as they are added to the set.

Remember that you can set this property through the
CurrentOptions property of a permanent or temporary
network variable monitor point to determine what retry
count to use when sending network variable updates
during the current monitoring session.

Default Value: For permanent monitor sets, the default
value for this property is 3. The default value for
temporary monitor sets is set to match the value of the
DsRetries property.

 LNS Programmer's Guide 204

Property Name Description

ServiceType This property determines the default messaging service
to use when explicitly writing the network variable
monitor point. This does not apply to polling or implicit
or explicit bound monitoring.

Setting this property through the NvOptions property of
a permanent monitor set, or through the
DefaultOptions property of a permanent network
variable monitor point, does not have an effect. The
default messaging service for each permanent network
variable monitor point is established by the
ServiceType property of the ConnectDescTemplate
specified when the network variable monitor point was
created.

You cannot set this property through the
DefaultOptions property of a temporary network
variable monitor point, as the DefaultOptions
properties of all temporary monitor points are not
accessible. However, you can set this property through
the NvOptions property of a temporary monitor set to
determine the default messaging service that will be
applied to all network variable monitor points as they
are added to the set.

Remember that you can set this property through the
CurrentOptions property of a permanent or temporary
network variable monitor point to determine messaging
service to use when sending network variable updates
during the current monitoring session.

Default Value: For permanent monitor sets, the default
value for this property is the acknowledged message
service. The default value for temporary monitor sets is
set to match the value of the DsService property.

LNS Programmer's Guide 205

Property Name Description

SuppressPollingIfBound This property determines if polling will be turned off for
monitor points whose target network variable is bound to
the host device. If True, polling will be turned off. In this
case, polling will be turned off even if the monitor point
does not use bound updates, as long as the target
network variable is bound to the host device through
some other means.

For example, if an network variable is explicitly
connected to a dynamic network variable on the Network
Service Device (perhaps via a fan-in connection), bound
updates from that network variable will be reported on
all the network variable monitor points monitoring the
output network variable, and if the
SuppressPollingIfBound property is True, the output
network variable will not be polled.

Default Value: True

ThrottleInterval This property contains the default throttle interval for
network variable updates for the set. This sets the
maximum interval between successive
OnNvMonitorPointUpdateEvent or
OnMsgMonitorPointUpdateEvent events that can be
generated by the monitor set.

If multiple updates are received within the throttle
interval, LNS will not fire a second event until the
throttle interval has expired, and will then fire an event
for the last update received. Thus, if this property is non-
zero and multiple updates are received within this
interval, events will only be fired for the first and last
updates. And so some updates may be lost. This value
should never be greater than the polling interval, since
that would guarantee that some polled updates would be
lost, and would waste network bandwidth.

Default Value: For permanent monitor sets, the default
value for this property is 1000ms. The default value for
temporary monitor sets is set to match the value of the
DsPollInterval property.

UseAsyncSend Use this property to determine whether or not LNS will
wait for a completion code to return after updating the
value of a monitor point, before returning to the user and
sending its next update message. If True, LNS will not
wait for a completion code.

Default Value: False

 LNS Programmer's Guide 206

Property Name Description

UseBoundUpdates If set to True, this property enables implicit binding.
With implicit binding enabled, LNS will attempt to
create connections without user intervention. Changing
this option through the CurrentOptions property does
not have an effect.

Before using this property, you should review the Using
Network Variable Monitor Points section, which
describes different ways you can use implicit binding.

This property must be set to False for temporary monitor
sets and points.

Default Value: False

NOTE: In the NvMonitorOptions object accessed through the DefaultOptions
property of a network variable monitor point, the PollInterval and
ThrottleInterval properties will initially be set to lcaDefaultMcpInterval (-1).
The GenerateInitialFetch, ReportByException, ResetPollingIfUpdated, and
SuppressPollingIfBound properties will be initially set to lcaDefaultMcpOption(-
1). This causes the values of those properties to always match the corresponding value
stored in the monitor set’s NvOptions object. As noted previously, the values of all the
other properties of the monitor set’s NvOptions object are only applied to monitor points
as they are added to the set, and so changes to the monitor set’s NvOptions object are
not retroactively applied to the monitor points already contained in the set for any other
properties.

Message Monitor Point Options
To recap the previous discussion in this chapter, you should follow these steps when
setting the monitoring options for your message monitor points:

1. Set the defaults for the monitor set by writing to the MsgOptions
property of the MonitorSet object. The following code sample sets the
default values for the FilterByCode, and FilterBySource properties.

Dim MsgMonitorPointOptions As LcaMsgMonitorOptions
Set MsgMonitorPointOptions = MyMonitorSet.MsgOptions
MsgMonitorPointOptions.FilterBySource = True
MsgMonitorPointOptions.FilterByCode = True
Set MyMonitorSet.MsgOptions = MsgMonitorPointOptions

For descriptions of the properties of the MsgMonitorOptions object, see
MsgMonitorOptions Object on page 207.

2. If you do not want a message monitor point in the monitor set to use the
default options established in step 1, set its defaults by writing to the
message monitor point’s DefaultOptions property. Note that these
changes will not be applied to a monitor point that is in an open monitor
set until the monitor set is closed and re-opened.

Echelon recommends that you set the DefaultOptions property in the
same transaction that you create the message monitor point whenever
possible. The following code sample sets the default values for a message

LNS Programmer's Guide 207

monitor point’s FilterCode property.

Set MsgMonitorPointOptions =_
 MyMsgMonitorPoint.DefaultOptions
MsgMonitorPointOptions.FilterCode = 62
Set MyMsgMonitorPoint.DefaultOptions =_
 MsgMonitorPointOptions

NOTE: Because temporary monitor points are only used in a single client
session, their DefaultOptions are not accessible. If you attempt to
acquire the DefaultOptions property through a temporary monitor
point, the LCA:#161 lcaErrNotAllowedOnTemporaryObject
exception will be thrown. All temporary monitor points are instantiated
with the default options selected in step 1.

3. When a monitor set is opened, each message monitor point will use the
default options established in either step 1 or 2. If you want to use
different options for a monitor point during a given monitoring session,
you can do so by writing to the MsgMonitorPoint object’s
CurrentOptions property. Remember that these changes will take
effect for the current session only.

You can change these defaults by writing to the CurrentOptions
property. The following code sample sets the current values for a message
monitor point’s Priority property.

Set MsgMonitorPointOptions = MsgMonPoint.CurrentOptions
MsgMonitorPointOptions.Priority = True
Set MsgMonPoint.CurrentOptions = MsgMonitorPointOptions

NOTE: The MsgOptions, DefaultOptions and CurrentOptions
properties are not passed by reference. When you modify a
MsgMonitorOptions object returned by any of these properties, the changes
will not take effect until the modified object is passed back to the
MsgOptions, DefaultOptions or CurrentOptions property of the
applicable monitor set or monitor point.

MsgMonitorOptions Object
The three properties mentioned in this section (MsgOptions, DefaultOptions,
CurrentOptions) all provide access to a MsgMonitorOptions object. The
MsgMonitorOptions object contains a set of properties that define the behavior of
message monitor points when they are enabled. Table 9.3 lists and describes these
properties. The default values listed in Table 9.3 are the defaults that are initially
applied to the MsgMonitorOptions object accessed through a monitor set’s MsgOptions
property.

 LNS Programmer's Guide 208

Table 9.3 MsgMonitorOptions Object

Property Name Description

Authentication This property determines whether authentication will be
used when sending explicit messages using this monitor
point or monitor set. If this property is set to True,
authentication will be used.

Default Value: False

FilterByCode This property indicates whether the FilterCode property
will be used to filter message tag values. If this property is
set to True, only message tags with certain message codes
will be passed to your client application.

You can determine which message codes will be passed to
the application by setting the FilterCode property
described later in this table.

Default Value: False

FilterBySource This property indicates whether message tag values will be
filtered by source device. If this is set to True, your
application will only receive messages from the AppDevice
specified as the targetDevice element when the message
monitor point was created. This value should never be set to
True if the monitor point is created with a dynamic message
tag as the targetDevice element.

Default Value: True for message monitor points created
with an AppDevice as the targetDevice element. False
for message monitor points created with a dynamic message
tag as the targetDevice element.

FilterCode This property indicates the message code to use as a filter
when the FilterByCode property is set to True.

Default Value: 0

LNS Programmer's Guide 209

Property Name Description

Priority This property determines whether or not priority messaging
will be used when sending explicit messages with this
monitor set or monitor point. If True, priority messaging will
be used.

Setting this property through the MsgOptions property of a
permanent monitor set, or through the DefaultOptions
property of a permanent message monitor point, does not
have an effect.

You cannot set this property through the DefaultOptions
property of a temporary message monitor point, as the
DefaultOptions properties of all temporary monitor points
are not accessible. However, you can set this property
through the MsgOptions property of a temporary monitor
set to determine the default priority setting that will be
applied to all message monitor points as they are added to
the set.

Remember that you can set this property through the
CurrentOptions property of a permanent or temporary
message monitor point to determine whether or not priority
messaging will be used when sending explicit messages with
this monitor point.

Default Value: For permanent monitor sets, the default
value for this property is False. For temporary monitor sets,
the default value is set to match the DsPriority property of
the System object.

 LNS Programmer's Guide 210

Property Name Description

Retries This determines the number of retries to use for
acknowledged, request/response, or repeat service messages.

Setting this property through the MsgOptions property of a
permanent monitor set, or through the DefaultOptions
property of a permanent message monitor point, does not
have an effect. The default retry count for each permanent
message monitor point is established by the RetryCount
property of the ConnectDescTemplate specified when the
message monitor point was created.

You cannot set this property through the DefaultOptions
property of a temporary message monitor point, as the
DefaultOptions properties of all temporary monitor points
are not accessible. However, you can set this property
through the MsgOptions property of a temporary monitor
set to determine the default retry count that will be applied
to all message monitor points as they are added to the set.

Remember that you can set this property through the
CurrentOptions property of a permanent or temporary
message monitor point to determine what retry count to use
when sending messages using this message monitor point
during the current monitoring session.

Default Value: For permanent monitor sets, the default
value for this property is 0. For temporary monitor sets, the
default value is set to match the DsRetries property of the
System object.

ServiceType This property specifies the default messaging service to use
when sending explicit messages with this monitor set or
monitor point.

Default Value: For permanent monitor sets, the default
value for this property is the acknowledged message service.
For temporary monitor sets, the default value is set to match
the DsService property of the System object.

UseAsyncSend LNS sets this property automatically for message monitor
points. For example, if you are sending a message via the
SendMsgWait() method, a response from the device is
expected. Therefore, LNS would set the UseAsyncSend
property to False. Or, if you are writing to a message
monitor point via the OutputDataPoint property, no
response is expected. So, LNS would set the property to
True.

LNS Programmer's Guide 211

Opening and Enabling Monitor Sets
After you have created a monitor set and defined its monitoring options, you can open it
and enable it for monitor and control operations. Note that you will not be able to use a
permanent monitor set that was created while the system management mode was
lcaMgmtModeDeferConfigUpdates until the system management mode has been
changed back to lcaMgmtModePropagateConfigUpdates. In addition, configuration
changes made to a permanent monitor set made while the system management mode is
set to lcaMgmtModeDeferConfigUpdates will not take effect until the management
mode is set to lcaMgmtModePropagateConfigUpdates.

Remember that you should access permanent monitor sets through the
CurrentMonitorSets property when you plan to open them. To open a monitor set, call
the Open() method on the monitor set. The Open() method takes two parameters:
doEnable and doPoll. The doEnable parameter determines whether or not the
monitor set should be enabled when it is opened. If True, monitoring of all points in the
monitor set will be enabled. In this case, the doPoll parameter indicates whether or not
polling of the monitor set will also be enabled. Monitor set polling is described in more
detail later in this chapter.

If the doEnable parameter is set to False, the monitor set will not be enabled, and the
doPoll parameter will not have an effect. In this case, you will need to enable the
monitor set, or a group of monitor points within the set, later with the Enable()
method.

NOTE: You do not need to use the Open() method to open temporary monitor sets with
your application, as they are opened automatically by LNS when they are created.
However, LNS does not enable temporary monitor sets at this point. This is so you can
set the Tag property and the monitoring options for your temporary monitor sets before
enabling them. As a result, you need to manually enable all temporary monitor sets with
the Enable() method, as described in the next section.

Using the Enable Method
You can enable all the monitor points in a permanent monitor set at once by setting the
doEnable element to True when you open the monitor set. If the doEnable element is
set to False, you can enable the monitor set later by calling the Enable() method on the
MonitorSet object later. You can use the same method to enable a temporary monitor
set.

You can also enable monitoring for an individual network variable or message monitor
point in a permanent or temporary monitor set by calling the Enable() method on the
NvMonitorPoint or MsgMonitorPoint object.

For monitor sets and network variable monitor points, the Enable() method takes one
input parameter: doPoll. If this is set to True, polling will be started on the network
variable monitor points when it is enabled. For message monitor points, the Enable()
method takes no input parameters, as you cannot poll message monitor points.

You can use the Disable() method to stop all polled and bound monitoring and control
for a monitor set or monitor point. If the Disable() method is called on a MonitorSet
object, polled and bound monitoring for all monitor points on the monitor set will be
disabled. After this, none of the monitor points in the set can be enabled for monitoring
until the Enable() method has been called on the MonitorSet object again.

 LNS Programmer's Guide 212

You can also call the Disable() method on a specific NvMonitorPoint or
MsgMonitorPoint object. This will override subsequent calls to the MonitorSet
object's Enable() method. In other words, if you call the Disable() method on a
monitor point named Point A, and then call the Enable() method on the monitor set
containing Point A, Point A would not be enabled, but all other monitor points in the
monitor set that have not been explicitly disabled would be. Once you have disabled a
monitor point with the Disable() method, you can only re-enable it by calling the
Enable() method on the monitor point, or by closing and re-opening the monitor set it
belongs to.

Once a monitor set or monitor point has been opened and enabled, you can use it for
monitor and control operations. For guidelines on how you can use network variable
monitor points, see Using Network Variable Monitor Points on page 212. For guidelines
on how you can use message monitor points, see Using Message Monitor Points on page
222.

Using Network Variable Monitor Points
This section describes four ways that you can use network variable monitor points to
monitor the values of the network variables on your devices:

• Explicitly Reading the Monitor Point. In this scenario, the application
explicitly reads network variable values individually. This method is
most efficient if network variable values need to be read infrequently and
unpredictably. For more information on this, see Explicitly Reading and
Writing Network Variable Monitor Points on page 213.

• Polled Monitoring. This method is most efficient when the value of a
network variable must be checked regularly, but the application does not
need to know immediately if the value changes (for example, outside air
temperature). In this scenario, LNS periodically polls the value of the
monitor points in the monitor set and reports them to your application
via the OnNvMonitorPointUpdateEvent event. For more information
on this, Polled Network Variable Monitoring on page 215.

• Implicit Bound Monitoring. This method is most efficient when you are
monitoring a network variable whose value will change infrequently, but
your application will require immediate notification when the value does
change (for example an alarm or failure condition notification). For more
information on this, see The Implicit Bound Network Variable Monitoring
Scenario on page 218.

• Explicit Bound Monitoring and Control. In this scenario, network
variables are explicitly created on the Network Service Device used by
the monitor and control application, and bound to network variables on
the devices in your network. This method allows the implementation of
fan-in monitoring, which is the process of connecting two or more output
device network variables with a single host input network variable. For
more information, see The Explicit Bound Network Variable Monitoring
and Control Scenario on page 219.

There are two ways you can use network variable monitor points to control the value of a
network variable:

• Explicitly Writing the Monitor Point. In this scenario, the application
explicitly writes network variable values individually, one at a time. This

LNS Programmer's Guide 213

method is most efficient if network variable values need to controlled
individually, or if they need to be written infrequently and unpredictably.
For more information on this, see Explicitly Reading and Writing
Network Variable Monitor Points on page 213.

• Explicit Bound Monitoring and Control. This method should only be used
for fan-out connections, which is the process of a single host output
network variable controlling two or more input device network variables.
This is most efficient when updating many network variables to the same
value at once. For more information, see The Explicit Bound Network
Variable Monitoring and Control Scenario on page 219.

Explicitly Reading and Writing Network Variable Monitor Points
In this scenario, the application explicitly reads and writes network variable values. This
method is most efficient if network variable values need to be read infrequently and
unpredictably, or written individually.

To explicitly read or write a network variable monitor point, you must first create a
monitor set and add monitor points for the network variables you want to monitor. For
more information on these tasks, see Creating Monitor Sets on page 192, and Managing
Monitor Sets on page 193.

Following that, you can open and enable the monitor set, and begin explicitly reading
and writing the values of the network variable monitor points in the monitor set. To do
so, you need to acquire a DataPoint object representing the network variable monitor
point. You can access such a DataPoint object by reading the NvMonitorPoint object's
DataPoint property.

The DataPoint object contains the value data for the monitor point. The value data is
stored in three properties on the DataPoint object: Value, FormattedValue, and
RawValue. All three of these properties point to the same piece of data in memory, but
they format the data in different ways:

• The Value property formats the data as a raw, scaled numeric value.

• The FormattedValue property formats the data based on the LNS
Object Server’s CurrentFormatLocale setting. The data stored in the
FormattedValue property is scaled and unit-converted based on the
FormatSpec the data point is using. For more information on
FormatSpec objects, see Data Formatting in page 239.

• The RawValue property formats the data as a raw byte array.

Whenever one of these values is set, the values of the other two properties will be
updated to reflect this change. However, you should note that reading and writing any of
the three value properties does not automatically access or update the network variable
on the source device.

Each DataPoint object contains a Read() method and a Write() method. The Read()
method copies the monitor point value data from the device into the DataPoint object.
The Write() method copies the monitor point value data from the DataPoint object to
the device. It is possible to automate this process with the AutoRead and AutoWrite
properties. Set the AutoRead property to True to cause the Read() method to be called
automatically before any of the three value properties are read. Set the AutoWrite
property to True to cause the Write() method to be called automatically after any of the
three value properties are set.

 LNS Programmer's Guide 214

Example of Explicitly Reading a Network Variable Monitor Point
To recap the previous discussion, follow these steps to explicitly read a network variable
value via a monitor point:

1. Create a monitor set on the device containing the network variables you
want to monitor, as described in Creating Monitor Sets on page 192.
Then, create a monitor point for each network variable you want to
monitor, as described in Adding Network Variable Monitor Points to a
Monitor Set on page 193.

2. Access the monitor set through the CurrentMonitorSets collection, and
then open and enable the monitor set. In this example, the doEnable
parameter supplied to the open method is set to True, so that the monitor
set is enabled as it is opened.

Set MyMonitorSets = MyNetwork.CurrentMonitorSets
Set MyMonitorSet = MyMonitorSets.Item(“Boiler Set”)
MyMonitorSet.Open(True, True)

3. Acquire the monitor set’s NvMonitorPoints collection, and access the
monitor points for the network variable you want to monitor.

Set MyNvMonitorPoints = MyMonitorSet.NvMonitorPoints
Set MyNvMonitorPoint =MyNvMonitorPoints.Item(“Pressure”)

4. Acquire a DataPoint object to use to explicitly read the value of the
network variable monitor point. Then, call the Read() method. LNS will
read the value of the network variable being monitored, and update the
DataPoint object’s value properties to match the current value.

Set MyDataPoint = MyNvMonitorPoint.DataPoint
MyDataPoint.Read()

Dim readValue as String
readValue = MyDataPoint.FormattedValue

NOTE: If the AutoRead property is set to True, you do not need to call
the Read() method in this step.

There are several ways your application can format the data stored in the DataPoint
object for display. For more information on this, see Data Formatting in page 239.

Example of Explicitly Writing a Network Variable Monitor Point
Follow these steps to explicitly write a network variable value via a monitor point:

1. Acquire the network variable monitor point you want to control, as
described in steps 1 through 3 of the Example of Explicitly Reading a
Network Variable Monitor Point scenario.

2. Acquire a DataPoint object to use to write the value of the network
variable monitor point. Then, set the value of the DataPoint object and
call the Write() method. LNS will update the value of the network
variable being monitored with the new value.

Set MyDataPoint = MyNvMonitorPoint.DataPoint
MyDataPoint.FormattedValue = “75.0 1”
MyDataPoint.Write()

LNS Programmer's Guide 215

NOTE: If the AutoWrite property is set to True, you do not need to call
the Write() method in this step.

Polled Network Variable Monitoring
In the polled monitoring scenario, LNS periodically polls the values of the monitor points
and reports the values using the OnNvMonitorPointUpdateEvent event. This method
is most efficient when the value of a network variable must be checked regularly, but the
application does not need to know immediately when the value changes (for example,
outside air temperature).

To use polled monitoring, you must first create a monitor set and add monitor points for
the network variables you want to monitor. For more information on these tasks, see
Creating Monitor Sets on page 192, and Managing Monitor Sets on page 193. Note that
when you set the monitoring options, the PollInterval property determines the rate at
which LNS will poll the value of each network variable being monitored.

Once you have created a monitor set and established a poll interval, you can open and
enable the monitor set, or a group of monitor points within the set. When you open and
enable the monitor set, make sure that the doPoll parameter is set to True. This will
enable polled monitoring for all monitor points on the monitor set. For more information
on how to open and enable monitor sets, see Opening and Enabling Monitor Sets on page
211.

You can stop polled monitoring for an entire monitor set by calling the Disable()
method on the monitor set (this will stop all monitoring). Or, you can stop polled
monitoring by calling the Enable() method with the doPoll parameter set to False
(this will leave monitoring enabled). In this case, polling will not be enabled for that
monitor point, even if it is enabled for the monitor set, until you call Enable() method
on the NvMonitorPoint object with the doPoll parameter set to True.

Once polling for a network variable monitor point has been enabled, your application will
be informed of the result of each poll via the OnNvMonitorPointUpdateEvent event. If
you only want your application to be informed when the value of a network variable
monitor point changes, set the ReportByException property to True when you set the
monitoring options for the set or point.

The OnNvMonitorPointUpdateEvent event includes three parameters: the
NvMonitorPoint object whose value is being reported, a DataPoint object containing
the value of the NvMonitorPoint, and a SourceAddress object that you can use to
identify the device containing the network variable.

Echelon does not recommend using the SourceAddress object to identify the network
variable, since source addresses may change, and translating from a source address to an
application device may be time consuming. A more efficient alternative is to set the
NvMonitorPoint object’s Tag property to a value you can use to identify the network
variable and source device associated with the monitor point when you create it.

To recap this discussion, make sure that you follow these steps when using the polled
network variable monitoring scenario:

1. When you create your monitor points, you should consider setting the Tag
property to a value you can use to identify the source device and network
variable.

 LNS Programmer's Guide 216

2. When you set the monitoring options for the monitor set, make sure that
the PollInterval property is set to the interval at which you want to
poll each network variable. In addition, make sure that the
ThottleInterval property is not set to a greater value than the
PollInterval property. The ThottleInterval property should be set
to 0 if you want to be assured of receiving an event for every network
variable update.

See the next section, Setting the Poll Interval, for guidelines you should
follow when setting the poll interval for your application.

3. If you only want your application to be informed when the value of a
network variable monitor point changes, set the ReportByException
property to True when you set the monitoring options for the monitor set.

4. When you enable the monitor set, or when you enable any of the monitor
points in the set, make sure that the doPoll element is set to True. Your
application will be informed of the result of each poll via the
OnNvMonitorPointUpdateEvent event. A sample
OnNvMonitorPointUpdateEvent event handler is shown later in the
Example of a Network Variable Event Handler section on page 217.

Setting the Poll Interval
When setting the poll interval for your LNS application, you should note the following:

1. The total number of data points being polled, combined with the
PollInterval chosen, results in a specific number of network variable
polls per second. The maximum number of polls that your network can
sustain is subject to the channel types being used, network topology, use
of authentication, size of the data being polled, performance of the devices
that contain the polled network variables, and network interface you are
using. You should make sure that your poll interval does not cause your
network resources to be exhausted.

2. The poll interval that you specify is not a precise value. LNS tries to poll
the data at the specified interval, but some network conditions may
prevent polling at the exact, desired moment. For example, if too many
messages and polling requests are using priority slots, it could cause
collisions on the priority slots. Regular network traffic, or transient
partial network outages may prevent successful polling at times. Such
failure will be reported by the OnMsgMonitorPointErrorEvent or
OnNvMonitorPointErrorEvent events.

3. Typical LONWORKS networks implement a distributed control algorithm
by means of distributed devices, and data exchange with network
variables. In many of those systems, such as a typical building control
system, monitoring applications are used to oversee network operation.
When you design such a monitoring application, you should bear in mind
that the network’s primary focus is on the execution of the control
algorithm, and that any network traffic generated, or any device or
network resources consumed by your monitoring approach, should not
prevent the network from fulfilling its primary task. You should design
network applications to be as unobtrusive as possible.

LNS Programmer's Guide 217

4. Each individual device on a network responds to a certain number of
network variable poll requests per second. The LNS application has
substantial processing power and a high performance network interface
at hand, and can typically handle more network variable poll requests
per second than most LONWORKS devices. When defining the poll
interval, make sure not to flood a single device with poll requests by
exceeding its individual limit. Not only would the device be unable to
respond to the request at the desired schedule, the polling requests would
also flood the device’s input buffers and might cause transient errors in
the operation of the control algorithm.

5. The poll interval is the interval between the last completion event for a
poll, and the next poll request. So if you were to set the poll interval for a
network variable to be 5 seconds, and it took 0.5 seconds to poll the
network variable, LNS would poll the network variable about every 5.5
seconds. In doing so, LNS avoids queuing poll requests for the same
network variable, and slows down polling for a particular device when its
responses are slow. This also causes less bandwidth to be consumed by
polls, because LNS automatically slows down if there is a large number of
retries for a given network variable.

6. After a network variable poll fails, the LNS Object Server will reduce the
polling interval of the device containing the network variable to once per
minute. If multiple network variables were being polled on the device, the
polling will be restricted to a single network variable regarded as the
"probe network variable." You should note that polling of the probe
network variable is randomized over each minute, so these polls may not
necessarily occur exactly once every 60 seconds. This has the effect of
distributing the probe polling more evenly. The LNS Object Server will
resume normal polling of the device as soon as it successfully polls the
probe network variable. Depending on the interval, it might recover in
less than 60 seconds. Note that normal polling may also resume before
the probe network variable is successfully polled if the LNS Object Server
detects a message from the device - for example if the device sends a
network variable update, or if the LNS Object Server pings the device.

Example of a Network Variable Event Handler
The following shows a sample event handler you could use for the
OnNvMonitorPointUpdateEvent. In this example, the application checks if the Tag
property of the monitor point returned by the event matches a certain value to determine
whether it should display the monitor point’s value. If the tag matches, then the
application obtains the monitor point’s new value from the DataPoint returned by the
event. There are several ways your application can format and display the data stored in
the DataPoint object. For more information on this, see Data Formatting in page 239.
Dim roomTemp as String
Private Sub lcaObjectServer_OnNvMonitorPointUpdateEvent(_
 ByVal nvMonitorPoint As Object, _
 ByVal dataPoint As Object, _
 ByVal srcAddress As Object)
 If nvMonitorPoint.Tag = "Room Thermometer" Then
 roomTemp = dataPoint.FormattedValue
 End If
End Sub

 LNS Programmer's Guide 218

Note that by using the OnNvMonitorPointUpdateEvent event as described in this
section, you will receive the events through the LNS Object Server. You can use the
ILcaNvMonitorPointListener interface to receive the events directly from the
network variable monitor point, which may be more efficient. You can only use this
technique if your development environment supports multi-threading. For more
information on this, see Tracking Monitor Point Updates on page 226.

The Implicit Bound Network Variable Monitoring Scenario
In the implicit bound monitoring scenario, LNS implicitly creates a connection from each
monitored output network variable in the monitor set to the corresponding network
variable monitor point. Every time the value of an output network variable on a device is
updated, the device will send a network variable update to LNS through the appropriate
connection. LNS will then report the update to the LNS client application via the
OnNvMonitorPointUpdateEvent event, as with the polled network variable monitoring
scenario. The network variable connections created by LNS are “invisible” connections,
meaning that you will not see the connections in any of the hub or target collections, and
the connections do not use any network variables on the Network Service Device.

NOTE: Network variable monitor points in temporary monitor sets cannot be
automatically bound by LNS to the monitoring node. As a result, you can only use the
implicit bound network variable monitoring scenario with permanent monitor sets.

Bound monitoring is most efficient when your application needs to be notified
immediately when the value of the network variable changes, but the value may not
change very frequently (for example an alarm or failure condition notification). You will
receive updates sooner using this method than the polled network variable monitoring
method, because your application will be notified of network variable updates as soon as
they occur. When using polled network variable monitoring, you will only receive
OnNvMonitorPointUpdateEvent events at the rate specified by the PollInterval
property.

To use implicit bound monitoring, follow these steps:

1. Create a monitor set and add monitor points for the network variables
you want to monitor. For more information on these tasks, see Creating
Monitor Sets on page 192, and Managing Monitor Sets on page 193.

2. When you set the monitoring options for the monitor set, set the
UseBoundUpdates property to True to enable implicit bound monitoring.
Note that it is possible for polled and bound monitoring to take place
simultaneously. Set the SuppressPollingIfBound property to True,
or set the PollInterval property to 0, to ensure that only bound
monitoring takes place.

3. Make sure that you set the ThrottleInterval property appropriately.
This property should be set to 0 if you want to be sure that network
variable update events are fired for each update.

4. Enable the monitor set, as described in Opening and Enabling Monitor
Sets on page 211. Once implicit bound monitoring has started, your
application will be informed of each network variable update via the
OnNvMonitorPointUpdateEvent event. If you only want your
application to be informed when the value of a network variable monitor
point changes, set the ReportByException property to True when you

LNS Programmer's Guide 219

set the monitoring options for the monitor point or monitor set.

The OnNvMonitorPointUpdateEvent event includes three parameters:
the NvMonitorPoint object whose value is being reported, a DataPoint
object containing the value of the NvMonitorPoint, and a
SourceAddress object that you can use to identify the device containing
the network variable.

Echelon does not recommend using the SourceAddress object to identify
the network variable, since source addresses may change, and translating
from a source address to an application device may be time consuming. A
more efficient alternative is to set the NvMonitorPoint object’s Tag
property to a value you can use to identify the network variable and
source device associated with the monitor point when you create the
monitor point.

See Example of a Network Variable Event Handler on page 216 for a
sample OnNvMonitorPointUpdateEvent event handler.

The Explicit Bound Network Variable Monitoring and Control
Scenario
In the explicit bound monitoring and control scenario, the application explicitly creates a
host network variable on the LNS application’s Network Service Device, connects one or
more device network variables to the host network variable, and then creates a monitor
point for the device’s output network variable.

Fan-in Connections
Consider an alarm system in which a number of detector devices are installed which can
send network variable updates indicating when an intruder has been detected. You
could use the implicit bound monitoring scenario to create bound monitor points to
monitor the detector devices. When one of the detector devices detected an intruder, it
would update its network variable, which would cause the
OnNvMonitorPointUpdateEvent event to be fired. In this case, the LNS application
could use the parameters returned with the OnNvMonitorPointUpdateEvent event to
determine which alarm had been triggered.

However, it may be more natural to connect all of the alarm device output network
variables to a single input network variable on the host PC. This type of connection is
called a fan-in connection, because multiple output network variables "fan-in" to a single
input network variable. Figure 9.1 shows an example of fan-in where a single input
network variable on the host is connected to two output network variables on the
network.

 LNS Programmer's Guide 220

Remote Display
Device

Control Device

nvoSetting

nvoSetPoint

Target Network Variables

LNS Application
PC

nviInput

Figure 9.1 Fan-In Connection

When monitoring a fan-in connection, you can monitor the input network variable, the
output network variables, or both. If your application needs to identify the source of an
update, you can create a monitor point for each output network variable, and set the
UseBoundUpdates property to False, and the SuppressPollingIfBound property to
True, when you configure the options for those points. Each time one of the output
network variables is updated, LNS will generate an OnNvMonitorPointUpdateEvent
for the monitor point associated with the source of the update. If you create a network
variable monitor point for the input network variable on the Network Service Device, you
will also get an update on that point any time any device involved in the connection
sends an update.

Fan-out Connections
Consider a heating system in an office building in which all fans and vents must be shut
off and closed due to a supervisor command given at a central monitoring station. You
could explicitly write a control value to each of the devices in order to shut them down,
but there are two problems with this.

First, it requires knowledge of the maximum number of fan and vent devices to be
controlled, and the application will need send the control value to each one separately.
This will cause at least one message to be sent for each device, which could cause a large
amount of network traffic. Second, it’s an inefficient use of resources for the LNS Server,
which must maintain the network variable configuration, network variable alias, and
self-documentation tables, as well as maintain a record of the application’s external
interface and connections.

An easier, more flexible, and more efficient solution is to connect a single control value
output network variable on the host to each of the input network variables on the fan
and vent devices. This type of connection is called a fan-out connection because a single
output network variable "fans-out" to multiple input network variables. When making
such a connection, it is important that you use an appropriate ConnectDescTemplate
object. The default connection description for all network variables on a Network Service
Device has the AliasOptions property set to lcaAliasForUnicast by default. This
is generally the best setting for fan-in connections to the Network Service Device, as it
may prevent creating a group for each output in the fan-in connection that may also be

LNS Programmer's Guide 221

connected to an input on another device. However, this is usually not the appropriate
setting for a fan-out connection, as this will generally result in sending out individual
messages for each input network variable.

You could then write to the value of the output network variable to update the values of
all of the input network variables on the fan and vent devices at once. Figure 9.2 shows
an example fan-out connection where an output network variable is connected to input
network variables on two devices on the network.

Fan Device
Two

Fan Device
One

nviInput1

nviInput2

Target Network Variables

LNS Application
PC

nvoValue

Figure 9.2 Fan-Out Connection

Creating and Using Host Network Variables
Host network variables are network variables that are created on the PC running the
monitor and control application (or on the PC running the LNS Server, for a Lightweight
client application). These network variables can be used just like network variables on
application devices, although they are frequently used to support bound monitoring and
control by the LNS application. To use host network variables in this scenario:

1. Create a custom interface and define the network variables to be used on
the host PC. You can create these dynamically after the system has been
opened. See Defining Host Network Variables on page 222 for more
information on this.

2. Connect the network variables on the device you want to monitor to the
network variable on the host PC, as desired. For information on creating
connections, see Connecting Devices on page 137.

3. Create a monitor set to monitor the network variables on the devices you
want to monitor. Then, implement code for an
OnNvMonitorPointUpdateEvent event handler, or set up a polling
scheme that will explicitly read and write the value of the host network
variable.

 LNS Programmer's Guide 222

4. You can now control the input network variables on the network by
writing to the host network variable on the PC. Or, you can monitor value
changes on the device network variables though the
OnNvMonitorPointUpdateEvent event.

Defining Host Network Variables
An LNS application can dynamically create and delete local host network variables (i.e.
network variables on the Network Service Device being used by the LNS application). All
host network variables become part of the local Network Service Device’s main interface,
which is accessible by reading the Interface property contained in the
NetworkServiceDevice object’s AppDevice object. It is not possible to add network
variables directly to the main interface.

However, you can add network variables to custom Interface objects created by LNS
applications. To do so, use the Interfaces collection returned by the
NetworkServiceDevice object’s Interfaces property. For more information on
custom interfaces, including how to add and remove network variables from them, see
Using Dynamic Device Interfaces on page 178.

Using Message Monitor Points
LNS supports the transmission and receipt of application messages and foreign frame
messages. Application messages and foreign frame messages are network messages that
do not relate to network variables, network management or diagnostic services.
Application messages use a 0x00...0x3E message code range, and are sometimes used for
non-interoperable data exchange. Foreign frame messages use the 0x40...0x4E message
code range and are sometimes used when tunneling packets related to other
communication protocols through a LONWORKS network. This allows you to use your
application to monitor and control devices that use application messaging.

Application messages are explicitly constructed in the transmitting device, unlike
network variable messages, which are implicitly constructed by writing to a network
variable or by calling library functions. Message monitoring is implemented by
connecting an output message tag on a device on the network to an input message tag on
the LNS application’s Network Service Device. Note that application messages cannot be
polled, and therefore application message monitoring always requires a bound
connection.

Message control is implemented with message monitor points. You can use the message
monitor points to send explicit messages to the device synchronously or asynchronously.
When using message monitor points, you should note that the maximum size of any
application message is usually 40 bytes. However, this varies depending on the network
buffers and the application buffers in the network interface you are using, as well as on
any network or application buffers in any intervening routers along the message’s path,
and in the application device that is receiving the message. If a message fails as a result
of being too large, the failure will appear to be the same as any communication failure,
and the device receiving the message will not respond. As a result, you should be careful
not to exceed your available network resources when creating an application to send
application messages.

LNS Programmer's Guide 223

Monitoring Message Monitor Points
The first step to take when monitoring application messages is to explicitly connect a
message tag on an application device to the msg_in tag on your application’s Network
Service Device. This will cause any messages sent by the device using the message tag to
be delivered to the Network Service Device. The second step is to create a message
monitor point to receive the messages. The message monitor point is used to inform LNS
that the application is interested in the message, based on the filtering criteria contained
in the point’s configuration, and to provide information to the application about the
message’s origin. Finally, the LNS application must open the monitor set containing the
message monitor point, and enable monitoring. After that, any qualifying message sent
by the application device using the bound message tag will generate an
OnMsgMonitorPointUpdateEvent event.

It is important to understand that the messages being monitored must be addressed to
the Network Service Device, or the Network Service Device must be in the destination
address scope of the message. That is, the Network Service Device will only receive
messages addressed to itself using standard LonTalk addressing:

• By unicast addressing consisting of the domain/subnet/node Id of the Network
Service Device.

• By unicast addressing using the neuron ID of the Network Service Device.

• By multicast addressing, due to group membership

• By subnet broadcasting if the Network Service Device is member of the
destination subnet.

• By domain-wide broadcasts if the Network Service Device is member of the same
domain.

When a bound message tag connection is used for monitoring, the binding process
ensures that messages sent using the message tag will use addressing details that
ensure that the destination device will actually receive and process the message.
However, unbound input message tags can be used to monitor messages that meet the
above criteria. For example, the LNS application could monitor all messages that are
sent as a domain broadcast, without explicitly establishing a message tag connection.

If the FilterBySource monitoring options property is set to False, the monitor point
will receive messages without regard to which device sent the message. To restrict
messages received by a message monitor point to those sent by the device specified as the
targetDevice element when the monitor point was created, make sure that you set the
FilterBySource property is set to True.

Every LONWORKS message contains a 1-byte message code. Only messages with the
following message codes can be monitored with the techniques described in this section:

• 0x00 – 0x3E: Application messages

• 0x40 – 0x4E: Foreign Frame messages

• 0x7F: Service Pin messages

Attempting to monitor messages with message codes other than the ones listed above
will result in no messages being reported.

 LNS Programmer's Guide 224

To monitor messages that begin with a specific message code, set the FilterByCode
monitoring options property to True, and the FilterCode property to the message code
to be monitored when you set the monitoring options for the monitor set.

To recap this discussion, follow these steps to monitor messages:

1. Create a monitor set, and add monitor points for the message tags you
want to monitor. For more information on these tasks, see Creating
Monitor Sets on page 192, and Managing Monitor Sets on page 193.

2. Connect one or more devices to the host PC, and add corresponding
message monitor points to the monitor set as described in the Adding
Message Monitor Points to a Monitor Set section on page 195. In the case
where a remote device propagates an explicitly addressed message with
an appropriate destination address, no such connection will be required.

3. Open and enable the monitor set, as described in Opening and Enabling
Monitor Sets on page 211.

4. Use the OnMsgMonitorPointUpdateEvent event to monitor the
message monitor points. An example event handler for the
OnMsgMonitorPointUpdateEvent event is shown below.

Receiving Message Monitor Point Updates
Once you have opened and enabled your message monitor points, your application will
begin receiving OnMsgMonitorPointUpdateEvent events each time a message is sent
to the monitored devices via your message tags. The OnMsgMonitorPointUpdateEvent
event returns the message monitor point that caused the event to be fired, and a
SourceAddress object identifying the device containing the message point. It also
returns two DataPoint objects: inputDataPoint and outputDataPoint.
inputDataPoint contains the information that was received from the monitored point.
If the incoming message is a request message, you can use the outputDataPoint
parameter to return a response.

Note that Echelon discourages using the SourceAddress object to identify the source of
a message. It is more efficient to set the FilterByAddress property of the message tag
to True, and rely on the message tag to identify the sending device.

Example Message Monitor Point Event Handler
The following code example shows how the OnMsgMonitorPointUpdateEvent could be
used to return data to an external device that requested such data using the
request/response messaging service This event handler checks the name of the message
monitor point to determine which device sent the message, and if the message is a
request it then sends a response to the request.

Note that by using the OnMsgMonitorPointUpdateEvent event as described in these
sections, you will receive the events through the LNS Object Server. If your development
environment supports multi-threading, you can use the
ILcaMsgMonitorPointListener interface to receive the events directly from the
message monitor point. For more information on this, see Tracking Monitor Point
Updates on page 226.

LNS Programmer's Guide 225

Private Sub lcaObjectServer_OnMsgMonitorPointUpdateEvent(_
 ByVal msgMonitorPoint As Object, _

UpdateType As Integer, _ByVal inputDataPoint As Object, _
 ByVal outputDataPoint as Object, _
 ByVal srcAddress As Object)

 If msgMonitorPoint.Name = sensorMsgMonPoint _
AND UpdateType = lcaMonitorEventTypeMsgRequest Then

 outputDataPoint.Value = myResponseData
 End If
End Sub

Controlling Message Points
You can send application messages to a device using MsgMonitorPoint objects. To
obtain a MsgMonitorPoint to use to send a single application message to a device, call
the AppDevice object's GetMessagePoint() method. This returns a
MsgMonitorPoint object that you can use to send application messages to the device.
You can do so by writing to the MsgMonitorPoint object's OutputDataPoint or
RequestDataPoint properties.

You can use the OutputDataPoint property to send a message that does not require a
response to the device. To send an application message to a device using this property,
set the DataPoint object's Value property to the value that you want to pass to the
device. All DataPoint objects returned by the OutputDataPoint property have their
AutoWrite property set to True, so the data will be automatically written to the device.

You can use the RequestDataPoint property to send a message that requires a
response to a device. The response can be requested as a synchronous response, or as an
asynchronous OnMsgMonitorPointUpdateEvent event that is triggered when the
response is received. To send the request message, set the DataPoint object's Value
property to the desired value. To request a synchronous response, call the
MsgMonitorPoint object's SendMsgWait() method. In this case, the response will be
returned by this method as a DataPoint object. To request an asynchronous response,
call the DataPoint object's Write() method. The response message will be returned via
the OnMsgMonitorPointUpdateEvent event.

As of LNS Turbo Edition you may send an application message to multiple devices using
group or broadcast addressing. To do this you must first define a dynamic message tag on
the AppDevice object that represents your application’s Network Service Device. Once
you have done so, connect this message tag to input message tags on all destination
devices. Then, create a permanent message monitor point on the Network Service Device
that specifies the new dynamic message tag as the monitor target. These tasks are
described in the Adding Message Monitor Points to a Monitor Set section earlier in this
chapter. Once you have performed them, you can then open the monitor set, and use the
message monitor point to send application messages from the Network Service Device to
the devices that are connected to the dynamic message tag.

Developing Remote Monitor and Control Applications
Monitor and control applications often need to run on a different PC than the PC running
the LNS Server, and sometimes need to be able to function when the LNS Server is not
attached to the network, or becomes unavailable due to a loss of power or other failure.
To support this, LNS allows Independent client applications to open networks in server-
independent mode. Independent client applications do not require the LNS Server to be

 LNS Programmer's Guide 226

connected to the PC running the application. Independent client applications read and
write data directly to and from the devices on the network without writing to the LNS
database.

Temporary MonitorSets objects are not available to Independent client applications,
and neither are the methods and properties of the AppDevice object. However,
Independent client applications have access to all permanent monitor sets and monitor
points (note that the LNS Server must be present in order to create monitor points).

This means that an Independent client application on a PC with monitor sets defined in
its CurrentMonitorSets collection can open those monitor sets and use them for
monitor and control operations without being attached to the LNS Server. Independent
client applications can configure existing monitor points and sets using the
CurrentOptions (but not the NvOptions or MsgOptions properties of a MonitorSet,
or the DefaultOptions property of an individual monitor point), and enable the
monitor points, but no other network functionality is available.

To open a network in independent mode and perform monitor and control operations, the
remote PC must have previously accessed the network as a Full client in server-
dependent mode, and created one or more monitor sets using the MonitorSets collection
accessed through the MyVNI property. After this, an Independent client application on
the PC can open the network and the monitor points can be monitored and controlled.

For more information on Independent clients and server-independent mode, see
Independent Clients on page 40. For more information on the differences between the
MonitorSets collections accessed through the MyVNI and CurrentMonitorSets
properties, see Permanent Monitor Sets on page 190.

Tracking Monitor Point Updates
This chapter describes several ways you can use the OnMsgMonitorPointUpdateEvent
and OnNvMonitorPointUpdateEvent events to track updates to your monitor points.
You will receive these event updates through the LNS Object Server. Alternatively, you
can receive these events directly through the monitor points using the
ILcaMsgMonitorPointListener and ILcaNvMonitorPointListener interfaces.

Using these interfaces results in improved LNS application performance, and provides
update and error events in a separate thread. The application remains responsive, and
all updates and error logging occurs in the background. This technique can only be used
if your development environment supports multi-threading (such as Visual C++). You
cannot use this technique with Visual Basic 6.0.

For more information on multi-threading and LNS, see Multi-Threading and LNS
Applications on page 316.

To use the ILcaMsgMonitorPointListener interface, follow these steps:

1. Create a COM object that implements the
ILcaMsgMonitorPointListener interface.

2. Define the object's behavior when the UpdateErrorEvent() and
UpdateEvent() methods are called. These methods will be called each
time the monitor point you select in step 3 is updated.

3. Call the Advise() method on the MsgMonitorPoint object you want to

LNS Programmer's Guide 227

monitor. Specify the COM object created in step 1 as the object element.
At this point, LNS will stop generating the
OnMsgMonitorPointErrorEvent and
OnMsgMonitorPointUpdateEvent events for the monitor point, and the
object specified as the object element will start receiving
UpdateErrorEvent and UpdateEvent events for the monitor point. The
Advise() method must be called from the thread that is managing the
OnMsgMonitorPointErrorEvent and
OnMsgMonitorPointUpdateEvent events.

NOTE: The OnMsgMonitorPointEvent event will be fired by the LNS
Object Server for each message monitor point contained in a monitor set
when the motor set is opened to signal that the message monitor point is
available for use. Similarly, the OnMsgMonitorPointEvent event will be
fired each time a message monitor point is created in a monitor set that is
currently open, acknowledging that the message monitor point has been
instantiated. You should wait until this event has been fired to retrieve a
MsgMonitorPoint object and call the Advise() method on it.

4. Each time the UpdateErrorEvent or UpdateEvent events are
received, the UpdateErrorEvent() or UpdateEvent() methods will be
called.

5. You can call the Unadvise() method on the MsgMonitorPoint object at
any time to return to the default behavior, where events are invoked in
the client thread.

To use the ILcaNvMonitorPointListener interface, follow these steps:

1. Create a COM object that implements the
ILcaNvMonitorPointListener interface.

2. Define the object's behavior when the UpdateErrorEvent() and
UpdateEvent() methods are called. These methods will be called each
time the monitor point you select in step 3 is updated.

3. Call the Advise() method on the network variable monitor point you
want to monitor. Specify the COM object created in step 1 as the object
element. At this point, LNS will stop generating the
OnNvMonitorPointErrorEvent and OnNvMonitorPointUpdateEvent
events for the monitor point, and the object specified as the object
element will start receiving UpdateErrorEvent and UpdateEvent
events for the monitor point. The Advise() method must be called from
the thread that is managing the OnNvMonitorPointErrorEvent and
OnNvMonitorPointUpdateEvent events.

NOTE: The OnNvMonitorPointEvent event will be fired by the LNS
Object Server for each network variable monitor point contained in a
monitor set when the motor set is opened to signal that the network
variable monitor point is available for use. Similarly, the
OnNvMonitorPointEvent event will be fired each time a network
variable monitor point is created in a monitor set that is currently open,
acknowledging that the network variable monitor point has been
instantiated. You should wait until this event has been fired to retrieve

 LNS Programmer's Guide 228

an NvMonitorPoint object and call the Advise() method on it.

4. Each time the UpdateErrorEvent or UpdateEvent events are
received, the UpdateErrorEvent() or UpdateEvent() methods will be
called.

5. You can call the Unadvise() method on the network variable monitor
point at any time to return to the default behavior, where events are
invoked in the client thread.

System Management Mode Considerations
The system management mode is stored in the MgmtMode property of the System object.
This determines whether device configuration changes are propagated to the devices
(lcaMgmtModePropagateConfigUpdates), or saved for later processing
(lcaMgmtModeDeferConfigUpdates).

You should be aware of the effects that the system management mode has on monitor
and control operations. Changing the database while the system management mode is
set to lcaMgmtModeDeferConfigUpdates mode affects monitoring operations in
different ways. This depends on whether you are using permanent MonitorSet objects,
or temporary MonitorSet objects, and whether you are using bound or unbound monitor
and control strategies.

Temporary monitor sets use the LNS database to determine how to monitor a device.
Therefore, use of temporary monitor sets while the physical configuration of the network
differs from configuration stored in the LNS database is discouraged, since these
inconsistencies may lead to monitoring failures, or even invalid data. As a result,
Echelon recommends that you do not use temporary monitor sets while the system
management mode is set to lcaMgmtModeDeferConfigUpdates.

Permanent monitor sets use configuration data in devices that is updated only when the
management mode is lcaMgmtModePropagateConfigUpdates. This means that any
monitor sets and points created prior to setting the management mode to
lcaMgmtModeDeferConfigUpdates will contain configuration data that is consistent
with the configuration currently stored in the devices, even if database changes have
been made subsequently while the system management mode is set to
lcaMgmtModeDeferConfigUpdates. The configuration of the permanent monitor sets
will not be updated to reflect the database changes until the management mode is
changed to lcaMgmtModePropagateConfigUpdates, at which point the devices will
also be updated. Thus, barring any update failures, the configuration of the monitor sets
will always be consistent with the physical devices on the network. As a result, you can
always use permanent monitor sets, regardless of the system management mode.
However, Echelon recommends that you use permanent monitor sets while the system
management mode is set to lcaMgmtModePropagateConfigUpdates whenever
possible.

You should also note that monitor points created or modified while in
lcaMgmtModeDeferConfigUpdates mode cannot be used until the system is set to
lcaMgmtModePropagateConfigUpdates mode. In addition, all connection changes
made while in lcaMgmtModeDeferConfigUpdates have no effect until the network is
placed in lcaMgmtModePropagateConfigUpdates mode.

LNS Programmer's Guide 229

Similarly, the implicit or explicit creation of bound connections causes device connection
changes that will not be propagated to the network while the system management mode
is set to lcaMgmtModeDeferConfigUpdates. As a result, your monitoring application
might fail to receive data, or it might have to resort to polling data. Echelon recommends
that you do not initiate bound monitor and control operations when the system
management mode is set to lcaMgmtModeDeferConfigUpdates.

Directly Reading and Writing Network Variables
At some point, you may want to read or write the value of a single network variable,
without monitoring its value before or after the operation. In this case, you should write
to the network variable directly, without creating a network variable monitor point.
Remember that if you plan on consistently monitoring and controlling a network variable
or group of network variables, monitor sets are the most efficient method to use.

Prior to LNS Turbo Edition0, the NetworkVariable object’s Value property was
provided for single read and write operations to network variables. However, as of LNS
Turbo Edition0, the Value property is deprecated and only supported for backwards
compatibility. You can now use the GetDataPoint() method to create DataPoint
objects to read and write to the values of network variables. When you do so, your
application will have sole access to that data point, and it will manage the format of the
data contained in the network variable locally. As a result, it will avoid misinterpreting
any formatting changes that may be made to a network variable’s value by other client
applications.

To acquire a DataPoint object you can use to read or write to the value of a network
variable, follow these steps:

1. Acquire the AppDevice object containing the network variable you want
to modify.

Set MyAppDevices = MySubsystem.AppDevices
Set MyAppDevice = MyAppDevices.Item(“Device 1”)

2. Obtain the device’s NetworkVariables collection, and then get the
network variable you want to read or write.

Set MyInterface = MyAppDevice.Interface
Set MyVariables = MyInterface.NetworkVariables
Set MyNV = MyVariables.Item(“Input One”)

3. Use the GetDataPoint() method to create a DataPoint object for the
network variable. The GetDataPoint() method takes a single input
parameter that must be set to 0.

Set MyDataPoint = MyNV.GetDataPoint(0)

4. To set the value of the network variable through the DataPoint object,
set the Value, RawValue, or FormattedValue properties, and then
call the Write() method. You do not need to call Write() if the
DataPoint object’s AutoWrite property is set to True.

MyDataPoint.Value = 1000
MyDataPoint.Write()

5. To read the value of the network variable through the DataPoint object,
call the Read() method and then read the value via the Value,

 LNS Programmer's Guide 230

RawValue or FormattedValue properties. You do not need to call
Read() if the AutoRead property is set to True.

MyDataPoint.Read()
Dim Value as String
Value = MyDataPoint.FormattedValue

When reading the value of a DataPoint object, there are many ways for
an application to determine how the data will be displayed. For more
information on this, see Data Formatting on page 239. Consult the LNS
Object Server Reference help file for a complete list of the properties and
methods of the DataPoint object.

The type of data that is stored in a network variable is determined by its base type. As of
LNS Turbo Edition, you can modify a network variable’s type by writing to its TypeSpec
property, as long as the network variable is on a device that supports changeable types.
For more information on this, see Changeable Network Variable Types on page 184.

Data Points and Enumerated Types
When reading or writing network variables and configuration properties with
DataPoint objects, you should note that some standard and user-defined types are
defined as enumerated data types in the resource files. A network variable or
configuration property that uses an enumerated type will only accept values that belong
to the enumeration referenced by the type it is using.

For example, the SNVT_defr_term type is based on the "defrost_term_t" enumeration
type. As defined in the standard LonMark resource files, the defrost_term_t enumeration
type contains values between -1 and 100. However, not all the values in this range are
associated with the type’s enumeration members. Values from 9 to 99 are illegal, since
there are no enumeration members associated with them. Each legal value is assigned an
enumeration name. If you have a network variable or configuration property that is
using an enumeration data type, you can only write the enumeration names defined for
that type to the object’s value.

Consider a case where you have acquired a data point for a network variable using the
SNVT_defr_term type. In this situation, you will only be able to write enumeration
names defined for the SNVT_defr_term type, such as DFT_TERM_LAST, to the
FormattedValue property of the DataPoint. You should also note that this is the only
property that enforces range limits (i.e. the Value and RawValue properties do not
enforce these restrictions). You can use the Value property of the DataPoint to obtain
the numeric value associated with the enumerator, as shown in the following code
sample:

Dim MyFormatSpec as LcaFormatSpec
Dim MyDataPoint as LcaDataPoint

Set MyFormatSpec = MyDataPoint.FormatSpec
MyFormatSpec.FormatType = lcaFormatTypeNamed
MyFormatSpec.FormatName = “SNVT_defr_term”
Set MyDataPoint.FormatSpec = MyFormatSpec

MyDataPoint.FormattedValue = DFT_TERM_LAST

After executing the code shown above, the Value property would return 3 - the numeric
value that corresponds to the DFT_TERM_LAST enumeration. Remember that LNS will

LNS Programmer's Guide 231

not perform range checking on the Value property, and no exception will be thrown if
you try to write an illegal value to the property.

If you write an illegal value to the Value property at this point (i.e. a value that does not
correspond to one of the valid enumeration names for the type) and then read the
FormattedValue property, no exception will be thrown. However, the value will not be
converted to an enumeration name since there is no enumeration associated with the
value. However, if you attempt to write the illegal value to the FormattedValue
property at this point, an exception will be thrown.

You could expand the previous example to retrieve all the valid enumeration names that
can be assigned to a data point by adding the sample code shown below. You will need to
use the MinValue and MaxValue properties to perform this task. These properties
contain the maximum numeric value (i.e. the value stored in the Value property) that
can be applied to the data point. This code checks every value between the data point’s
minimum and maximum values. If the data stored in the Value property does not match
the data stored in the FormattedValue property, it indicates that the FormattedValue
property represents one of the valid enumeration names:
 Dim i as Long
 For i = MyDataPoint.MinValue To MyDataPoint.MaxValue
 MyDataPoint.Value = i
 IF MyDataPoint.FormattedValue <> MyDataPoint.Value THEN
 cboEnumList.AddItem(MyDataPoint.FormattedValue)
 END IF

 Next

Using Configuration Properties In a Monitor and Control
Application
This section provides guidelines and instructions to follow when creating an LNS
application to monitor and control configuration property values. Configuration property
access is generally less efficient than network variable access, so for performance
reasons, you should only use LNS to monitor and control the values of configuration
properties when it is absolutely necessary. For an overview of configuration property
access performance, see Performance Considerations on page 237.

Generally, you should perform configuration property management using the
ConfigProperty objects stored in the LNS database, rather than by writing to the
configuration property value directly via network variable writes. If a configuration
property is implemented as a configuration network variable and is then modified via a
network variable write, the value of the configuration property on the physical device
will be updated. However, the value stored in the LNS database will not be updated.
Then, if the DownloadConfigProperties() method is called, the unsynchronized
values in the LNS database will be downloaded to the device, and the changes made to
the physical device will be lost. As a result, you need to make sure that the values of the
configuration properties on the devices on your network are synchronized with the values
stored in the LNS database for those configuration properties.

To facilitate this, LNS Turbo Edition features the ability to access configuration
properties via DataPoint objects. To do so, the LNS application must first call the
ConfigProperty object’s GetDataPoint() method. The GetDataPoint() method
takes an options element, which you can use to determine how the value of the

 LNS Programmer's Guide 232

configuration property in the LNS database and in the physical device will be affected by
changes made to the DataPoint object. The following sections describe how you can use
the GetDataPoint() method.

NOTE: Prior to LNS Turbo Edition0, the ConfigProperty object’s Value property was
provided for single read and write operations to configuration properties. Note the Value
property is deprecated and only supported for backwards compatibility.

Device-Specific Configuration Properties
Some configuration properties are designed to be modifiable by multiple distributed
sources, instead of solely by a central network manager. They are designated as such by
the device-specific flag. The value of a device-specific configuration property should
generally be read from the device itself, and not from the LNS database. However, LNS
does not enforce this restriction. The LNS application must decide whether to use the
device-specific configuration property in the device, or in the database. You can use LNS
to determine if a configuration property is device-specific by reading its
DeviceSpecificAttribute property. If a configuration property is device-specific, the
DeviceSpecificAttribute property will be set to True.

By default, the values of device-specific configuration properties will be read from the
device. The values of non-device specific configuration properties will be read from the
database if the values are available there, and from the device if they are not. You can
set the SourceOptions property to lcaDataSourceOptionsfromDevice at any time
to read configuration property values from the device rather than the database, or to
lcaDataSourceOptionsDatabaseOnly to specify that the values must be read from
the database, independently of the device-specific flag.

To provide full support of device-specific configuration properties, the
UploadConfigProperties() and DownloadConfigProperties() methods have
options to that allow you to upload or download device-specific configuration properties
separately from non-device specific configuration properties. These options are the
lcaConfigPropOptExcludeDeviceSpecific and
lcaConfigPropOptOnlyDeviceSpecific flags. They can be combined with the other
download/upload flags. For example, to download non-device specific configuration
property values to the device, call the DownloadConfigProperties() method with the
lcaConfigPropOptLoadValues and lcaConfigPropOptExcludeDeviceSpecific
options set.

For more information on the UploadConfigProperties() and
DownloadConfigProperties() methods, see Downloading and Uploading
Configuration Properties on page 125.

Using the GetDataPoint Method
You can use a DataPoint object to read and write to the value of a configuration
property. Each data point has three properties you can use to read and write to the data
point’s value: the FormattedValue property, the RawValue property, and the Value
property. Each of these properties represents the same value, but each one is formatted
differently:

• The Value property formats the data as a scaled, double float value. The
configuration property’s type file must be available in order to read the
Value property.

LNS Programmer's Guide 233

• The FormattedValue property formats the data based on the LNS
Object Server’s CurrentFormatLocale setting. The data stored in the
FormattedValue property is scaled and unit-converted based on the
FormatSpec the data point is using. The configuration property’s type
and formats file must be available in order to read the FormattedValue
property. For more information on FormatSpec objects, see Data
Formatting in page 239.

• The RawValue property formats the data as a raw byte array.

Depending on how you set the options element when you call GetDataPoint() to
create a DataPoint object for a configuration property, LNS may read or write the LNS
database, the configuration property on the physical device, or both when you read or
write the value of the DataPoint. This is described in more detail later in this section.
To acquire a DataPoint to use to read and write the value of a configuration property,
follow these steps:

1. Access the ConfigProperty you want to monitor and control. In this
example, the configuration property “cpCalibration” applies to the device
as a whole. Some configuration properties apply to a LonMark
Functional Block or network variable, in which case they are accessed via
the ConfigProperties collection of the parent LonMarkObject or
NetworkVariable.

Set MyInterface = myAppDevice.Interface
Set MyConfigProperties = MyInterface.ConfigProperties
Set MyCP = MyConfigProperties.Item(“cpCalibration”)

2. Call the GetDataPoint() method to create a DataPoint object for the
ConfigProperty.

Set MyDataPoint=MyCP.GetDataPoint(0,lcaDataSourceOptionsNormal)

Some configuration properties are arrays of elements. In this case, you
need to create a separate data point to read and write to each element in
the array. The first parameter passed to the GetDataPoint() method is
the index parameter. This specifies which element of the array you want
this data point to apply to. These arrays are 0-based. If the
ConfigProperty is not an array, specify 0 as the index parameter.

The second parameter is the options element. This determines how
LNS will apply changes you make to the DataPoint object to the LNS
database, and to the physical device on the network. For more
information on this, see the next section, Data Source Options.

Note that you can change both of these options later by modifying the
DataPoint object’s SourceIndex or SourceOptions properties.

3. To set the value of the configuration property through the DataPoint
object, set the Value, RawValue or FormattedValue property, and
then call the Write() method. Note that you do not need to call Write()
if the AutoWrite property is set to True.

MyDataPoint.Value = 1000
MyDataPoint.Write()

NOTE: The Value, RawValue and FormattedValue properties of
DataPoint objects acquired through configuration properties that use
enumerated data types have special behavior that you should be aware

 LNS Programmer's Guide 234

of. For more information, see Data Points and Enumerated Types on page
230.

4. To read the value of the configuration property through the DataPoint
object, call the Read() method and then read the value through the
Value or FormattedValue properties. You do not need to call Read() if
the AutoRead property is set to True.

Dim Value as String
MyDataPoint.Read()
value = MyDataPoint.FormattedValue

When reading a DataPoint object’s value, there are many ways for the
application to affect how the data will be displayed. For more information
on this, see Data Formatting on page 239.

NOTE: Data points are very useful when reading and writing formatted data, or when
accessing an entire raw data value as a whole. However, if you want to access arbitrary
bytes of raw data to read or write a range of elements in a configuration property array,
you should not use a data point. Instead, you should use the GetRawValuesEx() and
SetRawValuesEx() methods of the ConfigProperty object. See the LNS Object Server
Reference help file for more information on these methods.

Data Source Options
When you call the GetDataPoint() method, you will use the options parameter to
specify how LNS will manage differences that may exist between the value of the
ConfigProperty in the LNS database and the value of the configuration property in the
physical device on the network when you read or write to the DataPoint. Table 9.4
describes the values you can apply to the options element.

Note that the value you choose as the options parameter is stored in the DataPoint
object’s DataSourceOptions property. If desired, you can change this setting later.

LNS Programmer's Guide 235

Table 9.4 Data Source Options

Value Description

lcaDataSourceOptionsNormal If you use this option to create a DataPoint, or if
you set the SourceOptions property of the
DataPoint to this value later, then the value of
the ConfigProperty will be updated in the LNS
database and in the physical device on the
network each time you write to the value of the
DataPoint.

When you read the value of the DataPoint, the
value will be read directly from the device if the
source ConfigProperty is device-specific.

If the source ConfigProperty is not device-
specific, the value will be read from the database.
If its value does not exist in the database, then the
value will read directly from the device, as long as
the system management is set to
lcaMgmtModePropagateConfigUpdates. If the
source ConfigProperty is not device-specific, the
value is not in the database, and the system
management mode is set to
lcaMgmtModeDeferConfigUpdates, then the
NS#113 lcaErrNsCpValueNotFound exception
will be thrown when you read the value of the
DataPoint.

lcaDataSourceOptionsFromDevice If you use this option to create a DataPoint, or if
you set the SourceOptions property of the
DataPoint to this value later, then the data point
is read-only. Reading the value of this data point
will always read the value of the source
configuration property on the physical device on
the network.

lcaDataSourceOptionsDatabaseOnly If you use this option to create a DataPoint, or if
you set the SourceOptions property of the
DataPoint to this value later, then the value of
the data point will always be read from the LNS
database. When you write to the data point, the
new value will only be written to the
ConfigProperty object in the LNS database, and
not to the configuration property in the physical
device. Writing to a DataPoint with the
SourceOptions property set to this value is
recommended only when updating the database
with a value that has just been read from the
device.

 LNS Programmer's Guide 236

Value Description

lcaDataSourceOptionsTypeDefaultValue If you use this option to create a DataPoint, or if
you set the SourceOptions property of the
DataPoint object to this value later, then the
DataPoint will always return the default value of
configuration properties using the same type as
the source configuration property. The default
value is generally read from the functional profile
template on the device containing the
configuration property, or from the type definition
for this configuration property type. Data points
created with this option set are read-only.

Note that this value represents the “type default”
defined in the type resource file. The default value
of a given configuration property may differ from
the default value of its type, since the default
configuration property values for a given template
are defined in the external interface file and can
be set from the current values in the device.

When you create a DataPoint object with the lcaSourceDataOptionNormal option
described in Table 9.4, LNS will update the value stored in the database for the source
ConfigProperty object and schedule an update to the physical device each time you
update the value of the DataPoint object. This keeps the values stored in the LNS
database and the physical device on the network in synchronization, and is the
recommended way to update configuration property values.

However, in some cases, the values of the configuration properties in the LNS database
may become out-of-sync with the values of the configuration properties stored in the
devices on your network. The next section describes how you can resolve these situations.

Resynchronizing Configuration Property Values
Assuming you know when the configuration properties on a device in your network are
updated, and the LNS database is not updated as well, you can use the
UploadConfigProperties() and DownloadConfigProperties() methods to
resynchronize the values stored in the LNS database with the new values of the
configuration properties in the device (and vice versa). This is described in Downloading
and Uploading Configuration Properties on page 125.

The DownloadConfigProperties() and UploadConfigProperties() generally
affect all the configuration properties on a device. You can also use DataPoint objects
to synchronize a single configuration property value in the LNS database with the value
of the configuration property on the physical device. To do so, follow these steps:

1. Create a DataPoint object for the configuration property you want to
update. Specify lcaDataSourceOptionsfromDevice as the options
element when you call GetDataPoint(). The value returned for such a
data point will always match the value of the source configuration
property in the physical device.

Set MyDataPoint = MyCP.GetDataPoint(0, _

LNS Programmer's Guide 237

 lcaDataSourceOptionsfromDevice)

2. Call the Read() method to read the value of a data point created with
this option set.

MyDataPoint.Read()

3. Set the DataPoint object’s DataSourceOptions property to
lcaDataSourceOptionsDatabaseOnly. Now, when you write to the
data point, the value will be written to the ConfigProperty object in
the LNS database.

MyDataPoint.DataSourceOptions =lcaDataSourceOptionsDatabaseOnly

4. Call the Write() method. The value of the source ConfigProperty in
the LNS database will then be updated to match the value of the
configuration property on the physical device.

MyDataPoint.Write()

Determining When Values Are Out-Of-Sync
If you need to keep the configuration property values displayed by your application up-to-
date at all times, you can use the OnCommission event to do so. When a configuration
property is modified via an LNS application such as a device plug-in, the OnCommission
event will be generated, and the device’s CommissionStatus property will be set to
lcaCommissionUpdatesPending. Once the configuration property value has been
propagated to the device, another OnCommission will be generated and the device’s
CommissionStatus property will be set to lcaCommissionUpdatesCurrent.

You should note that this event can be generated for a variety of other reasons, such as
the creation of network variable connections, and does not necessarily indicate that a
configuration property value has been modified. You should also note that the
OnCommission event is only generated when the value of the CommissionStatus
property changes. Thus, if the device’s CommissionStatus property is already set to
lcaCommissionUpdatesPending, no OnCommission event will be generated until the
value is propagated to the device.

You can also read the ValueStatus property of a ConfigProperty object to determine
if there are any pending updates to the configuration property value stored on the
physical device. If the configuration property value stored in the database has been
modified by an LNS application but has not yet been written to the device, the
ValueStatus property will be set to
lcaConfigPropertyValueMgmtStatusPendingUpdate.

Performance Considerations
The performance of the monitoring application when reading configuration properties
from the database depends on disk performance. When reading configuration property
values from the device, rather than from the LNS database, the performance of
monitoring configuration properties varies depending on the implementation method.

When configuration properties are implemented within configuration files, the device
may provide one of the following three access methods:

• Direct memory read/write.

 LNS Programmer's Guide 238

• The LonTalk file transfer protocol (FTP), with random and sequential access.

• LonTalk FTP with sequential access.

The direct memory read/write is the preferred method for applications running on
Neuron-chips or Smart Transceivers, as long as the configuration file fits within an area
of directly addressable memory space of the Neuron Chip or Smart Transceiver. This is
the most efficient method when reading or writing individual configuration property
values. A device implementing direct memory read/write access will have an output
network variable of type SNVT_address, and will not have a network variable of type
SNVT_file_request or SNVT_file_status.

The LonTalk file transfer protocol is an interoperable way for devices to share data files
with one another. The file types 0, 1, and 2 are defined by the LonMark program for
specifying configuration parameters. For more information on LonTalk FTP, see the File
Transfer LONWORKS engineering bulletin, which can be downloaded from:

http://www.echelon.com/support/documentation/bulletin/005-0025-01D.pdf

LonTalk FTP with random and sequential access method requires an implementation of
an FTP server on the device, and can be used with any host processor. It can also be used
for a Neuron Chip or Smart Transceiver hosted device, if serial non-volatile memory is
needed for configuration property storage, the configuration property storage
requirements exceed the capacity of directly addressable memory, or if additional data
not related to configuration properties is also stored in files on that device. The random
access version of the LonTalk FTP protocol allows you to access configuration properties
individually. In addition, random access LonTalk FTP requires the device to be online
when you read the configuration properties, while directory memory read/write does not.
Random access LonTalk FTP also requires a network variable on the device that is
dedicated to controlling the position of the file pointer (SNVT_file_pos). LonTalk FTP is
the most efficient method to use when reading or writing all of the configuration property
values in a device at once, or when reading or writing configuration property values
stored in large contiguous blocks within the file.

LonTalk FTP without support for random access is considerably less efficient than the
other two access methods, as it does not allow individual configuration property access,
and a full transfer of all configuration property values is required for each modified
value.

A device implementing one of the two FTP methods will have an output network
variables of type SNVT_file_status, and an input network variable of type
SNVT_file_req. A network variable of type SNVT_file_pos is used to control the
position of the read/write pointer in a file used for random access. Therefore, a device
with a SNVT_file_status and a SNVT_file_req network variable, but without a
SNVT_file_pos network variable, only implements sequential access.

If a configuration property is implemented using a configuration network variable, the
monitoring performance for that configuration property would be similar to the
monitoring of an input network variable.

When you write an application to monitor configuration property values, you should take
the configuration property access method into account, as the time required to access the
configuration properties on your network will impact the overall performance of your
application. And although you need to consider these implications, you should remember
that LNS supports all methods to access a configuration property transparently.
Regardless of whether a configuration property is implemented as a configuration
network variable or as a configuration property in files, or whether the device

http://www.echelon.com/support/documentation/bulletin/005-0025-01D.pdf

LNS Programmer's Guide 239

implements an FTP server with or without random access, your LNS application will
maintain the configuration property using the same techniques described in this section.

Data Formatting
When displaying the values of NvMonitorPoint, MsgMonitorPoint, and DataPoint
objects with your monitor and control application, you should generally use the
FormattedValue property. The FormattedValue property is a variant type that can
contain a wide variety of formatted types. This section describes the factors that affect
what data will be stored in the FormattedValue property, and how your application will
display the data stored in the FormattedValue property.

FormatSpec Property
The NvMonitorPoint and DataPoint objects both contain a FormatSpec property.
This property contains a FormatSpec object. Similarly, MsgMonitorPoint objects
contain an InputFormatSpec and an OutputFormatSpec property, each of which
contains a FormatSpec object (one for incoming messages, the other for outgoing
messages). Each FormatSpec object specifies a base type from the device resource files.
The base type determines the type of data that is stored in the monitor point or data
point.

All applications can use the Standard Network Variable Types (SNVTs) and Standard
Configuration Property Types (SCPTs) contained in the Standard.TYP file, which is
available on the LonMark website at http://www.lonmark.org/. The data types covered by
SNVTs and SCPTs include most standard data types that are used in control networks
(temperature, heat, luminosity, pressure, etc). Manufacturers may also create User
Network Variable Types (UNVTs) and User Configuration Property Types (UCPTs),
which define data types that are specific to a device or devices created by the
manufacturer. The standard resource files are automatically installed with every version
of LNS, and you can obtain updates to the standard device resource files online at
http://www.lonmark.org. User-defined device resource files are normally installed as part
of the installation of device-specific plug-in software. When in doubt, contact your device
manufacturer for details.

As described in the Device Interfaces section in Chapter 6 of this document, each set of
resource files must be associated with a particular program ID, a range of program IDs,
or with all program IDs to associate it with a network variable, configuration property, or
LonMarkObject on a device. The type of association is called the scope of the resource
file, and the scope is specified using a scope selector. The scope selector for a resource file
specifies what part or parts of a device’s program ID should be used when selecting the
resource file. See Chapter 6 for more detailed information on program IDs and scope
selectors.

The FormatSpec object contains a Scope property, a ProgramId property, an Index
property, a FormatName property, and a FormatType property. To use these properties
to change the base type of a monitor point or data point, follow these steps:

1. Access the FormatSpec object for the monitor point or data point whose
base type you want to change.

Dim MyFormatSpec as LcaFormatSpec
Set MyFormatSpec = MyNvMonitorPoint.FormatSpec

http://www.lonmark.ord/
http://www.lonmark.org/

 LNS Programmer's Guide 240

2. Set the Scope and ProgramId properties to reference the device resource
files containing the definition of the base type you want to use.

MyFormatSpec.Scope = lcaResourceScopeMfg
MyFormatSpec.ProgramId = “8000010000000000”

3. Set the Index property if you want to identify the new type by its index
value within the resource file. Or, set the FormatType and FormatName
properties if you want to identify the type by its name. Note that the
FormatType property must be set to lcaFormatTypeNamed if you want
to identify the type by its name.

MyFormatSpec.FormatType = lcaFormatTypeNamed
MyFormatSpec.FormatName = “UNVT_color”

NOTE: If you pass an invalid type name to the FormatName property,
and then pass the FormatSpec object back to a data point or monitor
point, no exception will be thrown, although the FormatSpec object will
not reference a valid type. The LNS Object Server will use the previous
setting of the FormatName property to determine the data point or
monitor point’s type. You should note that if you read the FormatSpec
object in this situation, the FormatName property will still return the
invalid type name.

4. The FormatSpec object is not passed by reference. So, you must pass the
modified FormatSpec object back to the data point or monitor point for
the changes made in steps 2 and 3 to take effect.

Set MyNvMonitorPoint.FormatSpec = MyFormatSpec

Reading the FormatSpec Object
The FormatSpec object contains several properties you can use to determine how the
data stored in your data points or monitor points will be displayed. For example, you can
use the UnitsAdder and UnitsMultiplier properties to determine how the scaled
value of the data point or monitor point will be unit-converted for display as a formatted
value when your application reads the FormattedValue property. These factors can also
be used to determine how the formatted value units differ from the base units associated
with the data point type.

Table 9.5 introduces the other properties of the FormatSpec object. These properties are
read-only, and are set based on the type the FormatSpec object represents. See the LNS
Object Server Online Reference for more detailed information on these properties.

LNS Programmer's Guide 241

Table 9.5 FormatSpec Object Properties

Property Description

AltFormatName This property contains an indexed list of
all formats that can be applied to the
type used by the network variable or
data point. For example, in a
FormatSpec object representing the
SNVT_temp_f#US format (i.e. degrees
Fahrenheit), this property would contain
“SNVT_temp_f#US”, "SNVT_temp_f#SI",
and "SNVT_temp_f#US_diff".

AltFormatNameCount This property indicates how many
alternate formats are contained in the
AltFormatName property.

Precision This represents the number of digits that
will be used when data is read and
displayed using the format specification
if the data being displayed is a floating-
point type. This property has a range of
0-17.

If the data type used by the configuration
property or format specification is a
single float type, this property defaults to
the value of the FloatPrecision
property of the FormatLocale your
application is using. If the data type used
by the configuration property or format
specification is a double float type, this
property defaults to the value of the
DoubleFloatPrecision property of the
FormatLocale your application is using.

Units This property returns a string describing
the units of values using this format.

UnitsMultiplier This property indicates the value by
which the scaled value of the data point
or monitor point should be multiplied
when it is unit-converted for display as a
formatted value (via the
FormattedValue property).

 LNS Programmer's Guide 242

Property Description

UnitsAdder This property indicates the value that
should be added to the raw value of the
data point or monitor point when it is
unit-converted for display as a formatted
value (via the FormattedValue
property). This addition is performed
after the raw value is multiplied based
on the UnitsMultiplier property.

CurrentFormatLocale
As described in the previous section, the FormatSpec object assigned to a data point or
monitor point determines the base type of the data stored in the object. For data points,
you can customize how this data will be displayed using FormatLocale objects.

Each FormatLocale object contains a series of properties that reflect a particular
geographical area’s conventions for data display. These conventions affect how data
should be displayed in that area, including factors such as language, measurement
system (U.S. or Systeme Internationale), date formats, time formats, and decimal
number formats. The settings of a FormatLocale object determine how data accessed
through the FormattedValue properties of all DataPoint objects will be displayed
when your application uses that FormatLocale object.

Each client application can select which FormatLocale object it will use for a given
session by passing a selected FormatLocale object to the CurrentFormatLocale
property of the ObjectServer object before opening any networks and formatting any
data. Operations that will cause your application to format data include acquiring
DataPoint objects, and reading or writing the values of configuration properties and
network variables on your network.

By specifying their own FormatLocale object, client applications in different regions can
use their own sets of local or absolute formats when displaying data, without affecting
the data formatting used by other clients. This greatly reduces the risk of your
application returning information that is confusing or misleading due to formatting
changes made by another application.

You can access the FormatLocales collection through the FormatLocales property of
the ObjectServer object. Initially, the FormatLocales collection contains 4 pre-
defined FormatLocale objects:

1. UserDefaultRegionalSettings. This is the default value for the
CurrentFormatLocale property. When you use this FormatLocale object, all
the properties will be set based on the user-defined Windows regional settings for
the user currently logged onto the PC running your application. You can change
the regional settings on a PC using the Windows control panel Regional Options
applet. Consult the Microsoft Developer’s Network (MSDN) documentation of the
Win32 GetLocaleInfo() function for more information on the Windows
regional settings.

2. SystemDefaultRegionalSettings. When you use this FormatLocale object,
all the properties will be set based on the default Windows regional settings on

LNS Programmer's Guide 243

the PC running your application. The default settings may vary, depending on
which operating system is installed on the PC. Consult the MSDN documentation
of the Win32 GetLocaleInfo() function for more information on the Windows
Regional settings.

3. LonMarkCompatibility. When you use this FormatLocale object, all
properties will be set so that formatted data will be displayed based on the
LonMark standards used prior to LNS 3.0, when localized formatting was not
available. In this case, Systeme Internationale measurement units, LonMark-
defined time and date formats, and U.S. options for everything else will be used
to display all formatted data.

4. ISO8601DateAndTime. When you use this FormatLocale object, all properties
will be set to be the same as the LonMarkCompatibility settings, except for the
localized time and date formats, which will be based on the ISO 8601 standard.
This standard helps avoid confusion that may be caused by the different national
notations used for dates and times, and increases the portability of computer user
interfaces.

Creating FormatLocale Objects
The four pre-defined FormatLocale objects are read-only, but you can create custom
FormatLocale objects to suit the specific needs of your application with the Add()
method of the FormatLocales collection. Note that all custom FormatLocale objects
are instantiated with the same settings as the pre-defined
UserDefaultRegionalSettings FormatLocale object described above.

To create a custom FormatLocale object, and assign it as the CurrentFormatLocale,
follow these steps. Note that you can only create and configure your custom
FormatLocale objects, and set the CurrentFormatLocale property, before opening
any networks and formatting any data with your application. Operations that will cause
your application to format data include acquiring a DataPoint object, and reading or
writing the value of a ConfigProperty or NetworkVariable object. If you write to the
CurrentFormatLocale property after performing any of these operations, or attempt to
modify the FormatLocale object acting as the CurrentFormatLocale, the LCA:#122
lcaErrReadOnlyInContext exception will be thrown.

1. Open the Object Server as described in Chapter 4 of this document.

2. Access the FormatLocales collection.

Dim MyFormatLocales as LcaFormatLocales
Set MyFormatLocales = ObjectServer.FormatLocales

3. Invoke the Add() method to create a new FormatLocale object.

Dim MyFormatLocale as LcaFormatLocale
Set MyFormatLocale = MyFormatLocales.Add(“myNewFL”)

4. Set the properties of the new FormatLocale object to match your
application’s requirements. These properties are described in Table 9.6.

5. Assign the new FormatLocale object to the CurrentFormatLocale
property.

Set ObjectServer.CurrentFormatLocale = MyFormatLocale

 LNS Programmer's Guide 244

Table 9.6 lists the various properties of the FormatLocale object, and describes how
they affect the display of data stored in the FormattedValue property. For more
detailed information on each property, consult the LNS Object Server Reference help file.

Table 9.6 FormatLocale Objects

Property Description

CategoryPreferenceList You can use the CategoryPreferenceList
property to establish the format to use when
displaying the formatted value of a data point
whose base type (as specified by its FormatSpec
object) contains several alternate formats.

DateFormatSeparator
DateFormatSeparatorSource

The DateFormatSeparator property determines
what symbol will be used to separate the digits
that represent months, days and years when the
formatted value is displayed as a date. This
applies to format specifications containing the
date() macro in their text format specification,
such as SNVT_date_cal#LO:

text(date(year, month, day))

DecimalPointCharacter
DecimalPointCharacterSource

The DecimalPointCharacter property
determines what symbol will be used to indicate
decimal places when a formatted value is
displayed as a scalar number. This applies to
format specifications that use the %f symbol in
their text format specification, such as
SNVT_temp#US:

text("%f", *1.8+32(0:855))

DoubleFloatPrecision The DoubleFloatPrecision property
determines the default precision that will be used
when displaying double-float values.

FallbackFormat The FallbackFormat property specifies the
default type that should be used to display a
network variable data point’s formatted value if
the data point’s actual type cannot be determined.

FloatPrecision The FloatPrecision property determines the
default precision that will be used when
displaying single-float values.

LanguageId The LanguageId property determines the
language that will be used to display Windows
localized settings.

LNS Programmer's Guide 245

Property Description

ListSeparatorCharacter
ListSeparatorCharacterSource

The ListSeparatorCharacter property
determines what character will be used to
separate items in the formatted value that are
returned as parts of a list. This applies to format
specifications that specify the use of a locale-
specific separator character, e.g.
SCPTsetPnts#SI_LO:
text("%f|%f|%f|%f|%f|%f", occupied_cool,
standby_cool, unoccupied_cool,
occupied_heat, standby_heat,
unoccupied_heat)

MeasurementUnits
MeasurementUnitsSource

The MeasurementUnits property determines the
measurement units (Systeme Internationale or
U.S.) that will be used to display the formatted
values.

ShortDateFormat
ShortDateFormatSource

The ShortDateFormat property determines how
a formatted value will be displayed if it represents
a date. This applies to format specifications
containing the date() macro in their text format
specification, such as SNVT_date_cal#LO:

text(date(year, month, day))

ShortTimeFormat
ShortTimeFormatSource

The ShortTimeFormat property determines how
the formatted value will be displayed if it
represents a time. This applies to format
specifications containing the time() macro in
their text format specification, such as
SNVT_date_time#LO:

text(time(hour, minute, second))

TimeFormatSeparator
TimeFormatSeparatorSource

The TimeFormatSeparator property determines
what symbol will be used to separate digits
representing hours, minutes and seconds when a
formatted value is displayed as a time. This
applies to format specifications containing the
time() macro in their text format specification,
such as SNVT_date_time#LO.

NOTE: You can use the various *Source properties to determine whether the value of
the property should be manually entered by the application, or whether LNS will set the
property automatically based on the system default or user-defined Windows Regional
Settings on the PC running your application. For example, the
ShortTimeFormatSource property determines how the ShortTimeFormat property
should be filled in. These *Source properties default to the
lcaFormatLocaleSourceSystemDefaultRegionalSetting (1) value, which causes
the corresponding property to be initially set based on the system-default Windows
Regional Settings. If you change the value of the corresponding property, LNS will
automatically update the *Source property to the

 LNS Programmer's Guide 246

lcaFormatLocaleSourceManualSetting(2) value. Consult the LNS Object Server
Reference for more information on these properties.

LNS Programmer's Guide 247

Chapter 10 - LNS Database

Management

This chapter provides information you will need when
managing your LNS databases. This includes topics such as
validating network databases, performing database back-ups,
moving databases, and recovering network databases.

 LNS Programmer's Guide 248

Overview of LNS Databases
As described in Chapter 3, the LNS Server maintains two types of databases: the LNS
global database and a set of LNS network databases. These are high-performance disk-
based databases with in-memory caching to optimize repeated access to data.

The LNS global database contains the Networks collection, meaning that it contains the
names and locations of each of the network databases. The location of the global database
is maintained in the Windows Registry, and can be accessed using the DatabasePath
property of the ObjectServer object. This is set to the ObjectServer\GlobalDb
subfolder of the LONWORKS folder by default. A backup, empty copy of the global
database is available in the ObjectServer\BackupDb folder. The location of the global
database should be set when LNS is installed and then never changed, as LNS
applications must access the same global database if they are to interoperate.

Each network defined in the global database and managed by the LNS Server has its
own network database. The network database contains the network and device
configuration information for that specific LONWORKS network. This chapter provides
guidelines you should follow to maintain your LNS databases. This includes the following
topics:

• Automatic Database Upgrade

• Backing Up Network Databases

• Validating Network Databases

• Removing Network Databases

• Moving Network Databases

• Network Recovery

Automatic Database Upgrade
If you are upgrading to LNS Turbo Edition from a previous version of LNS, you do not
need to worry about compatibility issues between your LNS databases and the software
installed with LNS Turbo Edition. All LNS databases since Release 1.0 are compatible
with LNS Turbo Edition, and are automatically upgraded when they are opened by an
application running on LNS Turbo Edition.

This conversion is a multi-step process that could take a significant amount of time, as
global database and all the network databases must all be upgraded when they are first
opened with an LNS application that is running on LNS Turbo Edition. You can use the
OnDbConversionEvent event to track the progress of this procedure. This event is
triggered once for each stage of the conversion, and once when the conversion is
complete. See the LNS Object Server Reference help file for more information on the
OnDbConversionEvent event.

NOTE: LNS databases are not backward compatible. Once a database is upgraded, the
upgrade changes cannot be reversed, and the database cannot be accessed using pre-
Turbo Edition versions of LNS.

LNS Programmer's Guide 249

Backing Up Network Databases
The ability to backup and restore an LNS database is a critical requirement for most
systems. LNS provides a network recovery feature you can use to recover a lost database
from the network, which is described later in this chapter. However, it is much more
reliable to use an archived copy to restore a lost database, or a database that has become
corrupted. Different factors can cause database corruption. For example, some hard disk
controllers have a write-caching option to improve write performance. Use of this option
is not recommended with database management software such as LNS, because a power
failure during operation may result in database corruption. You should note that most
Windows operating systems enable write-caching by default.

As described earlier in this chapter, the LNS Object Server maintains a network
database for each network defined in the global database. The location of the global
database is defined by the DatabasePath of the ObjectServer object, and is set to the
LONWORKS\ObjectServer\GlobalDb directory by default. The location of each network
database is defined when each network is created, and you can determine this location
later by reading the DatabasePath property of the Network object.

To backup a global database or a network database, copy the entire contents of the global
or network database directory, including all subdirectories. You can reduce the size of the
backup by using an archiving utility such as PKZIP to compress and archive the files. Be
sure to specify the appropriate options to include subdirectories in the archive.

You can restore both the global and network databases, or just the network database.
You can also restore databases to the same PC or a different PC. If you restore both
databases, the global database must be restored to the PCs default global database
directory, and each network database must be restored to its original location as defined
in the global database. Note that if you move an LNS database from one PC to another,
there are other files you will need to move as well. For more information on this, see
Moving Network Databases on page 254.

If you are restoring an existing network database, you should first delete any existing
files in the database folder and sub-folders, and then copy the backup files into the folder.
Make sure the network is closed when you do so. This will avoid leaving any
“stale” files in the restored database directory. If you are restoring a network
database that is not already on the PC, but is already referenced in the global database,
restore it to its original location. To restore a network database that is not already in the
global database, restore the database into a new directory, then call the Add() method
on the Networks collection with the CreateDatabase parameter set to False. This
tells the LNS Object Server that this is an existing database that must be registered in
the global database. Networks can only be imported by local applications. The following
code imports a network named "N1" with database path "c:\N1".

Dim MyNetwork as LcaNetwork
Set MyNetwork = MyNetworks.Add("N1", "c:\N1", False)

Backup Method
To facilitate the process of backing up your network databases, the Backup() method
has been added to the Network object for Turbo Edition. You can call this method on any
local network to make a backup copy of the network database, and export the backup
copy to a local directory of your choice. The following code sample backs up a network
database to the C:\BackupDBs\LNSNetworkDatabase folder.

 LNS Programmer's Guide 250

MyNetwork.Backup(“C:\MyBackupDBs\” & MyNetwork.Name)

You can use this method to backup a network database at any time, including while the
network is open and clients are attached to it. However, if a remote Full client
application accesses the Networks collection while the database is being backed up, that
network will not appear in the Networks collection. In addition, if a remote Full client
application attempts to open a network while it is being backed-up, the operation may
fail, whereas Local and Lightweight client applications will simply wait for the backup to
complete in this case. LNS calls made by client applications already connected to the
database when a backup is initiated may not return until the backup is complete, and
requests to modify the database will be suspended until the backup is complete.

Echelon recommends that you use this method to backup the network database before
validating a network database with the Validate() method described in the next
section. You can then archive the backed-up database after it is validated.

Validating Network Databases
As described in Chapter 2, What’s New In Turbo Edition, LNS Turbo Edition features the
ability to perform database validations. There are two ways to perform a database
validation: to use the LNS Database Validation Tool, or to use the Validate() method
of the Network object.

LNS Database Validation Tool
You can use the LNS Database Validation Tool to validate any of the network databases
on a given PC. The tool will process the contents of the selected network database, and
report any errors or inconsistencies it discovers while doing so. It can optionally repair
some of these errors as part of the validation process. Inconsistencies and errors that
may be discovered during the database validation procedure include orphan objects
(objects that cannot be accessed through their parent object), broken interfaces, and
duplicate objects. You can access the LNS Database Validation Tool by selecting LNS
Database Validator from the Echelon LNS Utilities group in the Windows Programs
menu. Figure 10.1 shows the LNS Database Validation Tool.

LNS Programmer's Guide 251

Figure 10.1 LNS Database Validation Tool

To start a database validation, follow these steps:

1. Open the LNS Database Validation Tool and select the network you want
to validate from the Network to Validate: pull-down list.

2. Optionally click the Repair Database check-box if you want LNS to
attempt to repair the errors it finds.

3. Click the Validate button to start the network validation. Status and
result of the validation will appear in the scroll box at the bottom of the
dialog.

Consult the online help for the LNS Database Validation Tool for more detailed
information on how to use the utility.

Validate Method
You can also use your own LNS application to perform database validations. The
Validate() method has been added to the Network object for Turbo Edition. When you
call Validate() on a network, LNS will perform a database validation on its network
database. The method provides options you can use to specify whether or not LNS will
attempt to repair any of the errors it finds.

When the validation has completed, the method returns a DatabaseValidationReport
object that contains information summarizing the results of the validation. This is the
same set of data that would be returned if you used the LNS Database Validation Tool to
validate the network database, including descriptions of all the errors it encountered, all
the errors that were repaired as part of the validation procedure, and all the errors that
were not repaired as part of the validation procedure.

 LNS Programmer's Guide 252

Table 10.1 lists the properties of the DatabaseValidationReport object. See the LNS
Object Server Reference help file for more details on the DatabaseValidationReport
object and its properties.

Table 10.1 DatabaseValidationReport Object

Property Description

PassedValidation This property will be set to True if the network passed
the database validation. This will occur if no errors
were discovered during the validation, or if all the
errors discovered during the validation were repaired.

This property will be set to False if the network
database has any problems that were not repaired
during the validation. In this case, you can use the
ErrorSummaries property to examine the problems
that were not repaired.

ErrorSummaries This property contains the
DatabaseValidationErrorSummaries collection
returned by the database validation. This collection
contains a group of
DatabaseValidationErrorSummary objects, each of
which contains properties identifying and describing an
error that was encountered, and not repaired, during
the database validation. You can use this collection to
troubleshoot any problems that still exist in the
database after performing a validation.

RepairedErrors This property contains the number of errors that were
successfully repaired by LNS during the database
validation.

UnrepairedErrors This property contains the number of errors that were
not repaired by LNS during the database validation.

TotalObjectsValidated This property contains the number of database objects
that LNS validated during the database validation
procedure.

Special Considerations
When validating a network database, there are several things you should consider.
Depending on the size of the network database, it may take a considerable amount of
time to complete the database validation. You can use the OnDbValidationEvent
event, or the ProgressUpdate() method of the ILcaProgressListener interface, to
check the status of an ongoing database validation.

You can cancel a validation by invoking the CancelValidation() method on the
Network object. In this case, the method will not return a valid
DatabaseValidationReport object.

The database validation must be initiated locally. While the database validation is in
progress, clients will be unable to modify or write to the database. As a result, Echelon

LNS Programmer's Guide 253

recommends that you perform the database validation while a minimal number of client
applications are connected to the database. One suggested approach is to backup the
database and restore it with a different name and location, and perform the validation on
this restored database. This approach will minimize the disruption caused by the
validation, and has the benefit of producing a backup whose validity is known.

While the new LNS database validation feature described in the previous section can be
used to repair many of the errors that may occur in your network databases, you should
not consider this feature a replacement for consistently backing up your network
databases. Echelon strongly recommends regularly backing up and validating the LNS
database, to ensure that there is always a recent, valid database backup to fall back upon
in the event of database or file system failure or recovery from user error. See the
Backing Up Network Databases section earlier in this chapter for guidelines on this.

Using the CompactDb() Method
You can also use the CompactDb() method to help maintain your network databases.
When you call CompactDb() on the ObjectServer object, LNS will defragment and
reindex the global database. When you call CompactDb() on a Network object, LNS will
defragment and reindex the network database. Defragmenting and reindexing a
database might result in smaller database size, and might improve performance of LNS
applications that access that database. If database errors are generated when you open a
network, it may indicate there are indexing problems on the network database that can
be resolved via the CompactDb() method.

You should not perform these operations on a database that is open and in use by any
client application. In addition, you should backup all databases before calling this
method and your PC should have at least twice as much free disc space as the size of the
database when you call this method.

Removing Network Databases
To remove a network database that is no longer needed, and to recover all LNS Device
Credits that are currently consumed by that network, you need to delete the network from
the LNS global database. To do so, follow these steps:

1. Open the system using a valid network interface. Set the system
management mode to lcaMgmtModePropagateConfigUpdates. This
will allow you to recover the LNS Device Credits used to install the
network. You will lose the LNS Device Credit used to install any
application device that is still commissioned when the network is deleted.

For more information on LNS Device Credits, see Chapter 13.

MySystem.MgmtMode=lcaMgmtModePropagateConfigUpdates

2. Call the Decommission() method on each AppDevice and Router
object in your network (except those AppDevice objects that represent
Network Service Devices).

You should decommission all applicable AppDevice objects first, and
then decommission all Router objects. This prevents decommissioned
routers from blocking access to application devices that have not yet been
decommissioned.

 LNS Programmer's Guide 254

3. Close the system. This detaches the Object Server from the network and
shuts down the LNS Object Server.

MySystem.Close()

4. Close the network. This closes the network database.

MyNetwork.Close()

5. Call Remove()on the Networks collection to delete the network. The
Remove() method deletes the network database directory, the network
database, and the reference to the network within the global database:

MyNetworks.Remove(MyNetwork.Name)

Moving Network Databases
Sometimes, you may need to move a network database from the PC it was created and
maintained with. This may be because the LNS Server PC is due for a hardware
upgrade, or the integration work continues with the installation phase on site when
installing a network using the engineered system installation scenario, or a network
database needs to be moved into a data archive for retrieval at a future time.

Moving a LNS network database is a 2-step process. First, you need to remove the
database from its original location, and then you need to connect to that database from
its new location.

To remove the links to the network database without interrupting operation on the
network itself, and without destroying the network database itself, follow these steps:

1. Close the related System and Network objects, if open:

MySystem.Close()
MyNetwork.Close()

2. Call RemoveEx()on the Networks collection to delete the network. When
you use the RemoveEx() method, you can specify whether the network
database is to be deleted. If you do not delete the network database, you
can restore the network later, without having to re-create the database.
The following code removes the network, but leaves the database files
intact for use on a different location.

MyNetworks.RemoveEx(MyNetwork.Name, -
 lcaNetworkRemovalFlagLeaveFiles)

NOTE: In this scenario, you will not decommission any devices in the
network before removing the network from the Networks collection, as
you will want the network to be functional when you finish moving the
database and restore it.

The next step is to move the network database to its new PC. When you move a network
database, you should include the entire contents of the network database directory,
including all subdirectories. You should also include any files from other directories that
are referenced in the database such as any download image files (.APB extension),
external interface files (.XIF, .XFB, and .XFO extensions), LonMark Resource files (.TYP,
.FPT and .FMT extensions), any language resource files with extensions such as .ENG,
.ENU, .FRA, etc), any user-defined resource files, icon files (.ICO extension), bitmap files

LNS Programmer's Guide 255

(.BMP extension), and source files (.NC, .C and .H extensions). It is also a good idea to
reinstall plug-in software that applies to device types that are used within this network
with your data. Echelon recommends that you backup all these files before performing
the move. NOTE: Figure 6.2 in Chapter 6 of this document depicts where the external
interface files on a PC are stored.

Once you have moved the database to the new PC, you can restore access to the network
database on another LNS Server PC by following these steps:

1. Restore the database files into a suitable location on the LNS Server PC’s
hard drive, e.g. in a folder called “C:\MyNetwork”.

2. Restore all the required support files to their respective locations. You
will need to add any resource file sets that have been moved to the
resource file catalog. Any other files referenced in the network database
must be placed in the same absolute path location on the new PC.
Alternatively, you can update the path property (e.g. BitmapFilePath
or IconFilePath property) referencing the file.

3. Call the Networks collection’s Add() method. You will provide a name
for the imported database as the networkName element, and a reference
to its location as the databasePath element. Set the createDatabase
element to False. This adds a reference to the imported database to the
global database, without destroying any of its content.

Dim MyNetwork As LcaNetwork
Set MyNetwork = MyNetworks.Add(“Zorro Ltd”, _
 “C:\MyNetwork”, False)

Network Recovery
The LNS Object Server includes a set of services that allow it to rebuild a network
database by scanning an installed network. This process, known as network recovery,
can be used to:

• Migrate from a LonManager API-based tool to a LNS-based tool.

• Migrate from an NSS-10 managed network to an LNS Object Server
managed network.

• Migrate from an NSS-based tool to an LNS-based tool.

• Recover a network database when no backup is available.

Recovery must be initiated by a Local client application. Even though you can use the
network recovery feature to rebuild an entire network database, you should not consider
it to be a replacement for consistently backing up your LNS databases, as described in
the Backing Up Network Databases section on page 249. Database backup has these
advantages:

• Copying a database directory to restore from a backup is much faster
than performing a network recovery. To recover a network database, the
LNS Object Server must scan the network to discover all the devices,
upload the piece of the overall network configuration that it stored in
each device, and then deduce the overall configuration of the network
from these pieces. This data collection and reconstruction process grows
roughly linearly with the complexity of the network, where complexity is

 LNS Programmer's Guide 256

a function of the number of devices, network variables, channels, and
connections.

• Network recovery only recovers attributes and properties stored in the
devices on the network. LNS-specific information such as subsystem
names and device names is not recovered. In addition, the recovery
process will not create an exact duplicate of the original database. If you
compare a recovered database to the original database, there will be
differences, as there are many objects, properties and attributes that
cannot be identified uniquely and unambiguously by the recovery process.

For example, the handles assigned to devices and routers might differ,
and connection hubs and targets may differ if you were to compare the
original database with the recovered database. A network recovery may
also be incomplete if the network itself is inconsistent. A network could
become inconsistent if the network tool failed while updating the
configuration of a series of devices. In this case, some devices would
contain "new" information while other devices contain "old" information.
When recovering this network, there is no way for the LNS Object Server
to determine which information is out-of-date.

For more information on inconsistencies that may exist between the
original database and the database created by the network recovery
process, see the next section, Network Recovery Inconsistencies.

• Network recovery cannot recover network variables, monitor sets or
monitor points defined on a Network Service Device, or any connections
involving a Network Service Device.

• Restoring a network database from a backup is more reliable. Successful
recovery of a database from a given network relies on that network being
properly configured, and not saturated with regular network traffic when
the recovery is performed. Additionally, authentication can prevent parts
of a network from being recovered.

Network Recovery Inconsistencies
It is possible that some network inconsistencies will be created while recovering a
network database. Before performing a network recovery, you should review the
following list of inconsistencies and limitations of network recovery:

• Recovery of networks with unsupported configurations is not possible.
Examples of unsupported network configurations include networks with
multiple authentication keys, or networks with multiple domains.

• If a bound network variable has no associated source or target, it is
marked as unbound. No address is associated with this network variable.
This could occur if only one of two devices that take part in a connection
is recovered successfully.

• If a bound declared message tag has no targets, its address table entry is
marked as empty.

• Any address table entries that are not associated with a network variable
or message tag (source or target) are marked as empty. A lost source or a
lost target may create this situation. Group use counts are updated as
necessary, and group IDs are freed as necessary.

LNS Programmer's Guide 257

• The recovery process has no way of determining what network variables
are hubs, and what network variables are targets, in the connections on
the recovered network. These relationships are arbitrarily assigned.

Because the hub/target relationships may change, the recovery may not
restore the proper connection descriptions to the connections on the
recovered network. If the recovery is unable to determine the correct
connection description for a connection, it uses the default connection
description.

• In many cases, information stored in the network database will be lost,
and LNS will make its best guess based on the information it does
recover on how to fill in the lost information during the network recovery.
This includes most properties of the System object.

• If LNS cannot communicate with a device, the device will not be
recovered. This will create inconsistencies in any connections that the
device was part of. LNS will recover those connections to the extent
possible, leaving out the missing device. LNS takes the following actions
when this sort of inconsistency is detected:

• If a bound network variable has no associated source or target, it is
marked as unbound. No address is associated with this network variable.
The connection is lost.

• If a bound dedicated message tag has no targets, its address table entry is
marked as empty. The connection is lost.

• Any address table entries that are not associated with a network variable
or message tag (source or target) are marked as empty. A lost source or a
lost target may create this situation. Group use counts are updated as
necessary, and group IDs are freed as necessary.

• If the configuration of a device in the recovered network is inconsistent,
then LNS will not recover its connections properly, possibly effecting
other connections in ways that were not intended.

• The configuration of your Network Service Device will be not be recovered
during this process, as the configuration of the device, including the
network variable configuration, network variable selector values, and
most of the Network Service Device’s address table entries, are stored on
the PC containing the network database. As a result, monitor sets on the
Network Service Device, and all connections involving the Network
Service Device, will not be recovered.

• If you have modified the attributes of the network image of any of the
devices in your network outside of LNS, including the channel ID of any
of the devices, the LNS Object Server may be unable locate that device on
the network during recovery. This may cause the network recovery to fail.

• Any information specific to LNS but without correspondence on the
physical network cannot be recovered. This includes user-defined data
(Extension objects), subsystem assignment, and registration
information for plug-in software (ComponentApp objects).

For all of these reasons, you should use database backup as the primary means of
preventing database loss. In addition, you should examine the recovered database to
ensure its stability and consistency after performing a network recovery.

 LNS Programmer's Guide 258

Performing a Network Recovery
To recover a network database, you can use the LNS Database Recovery Wizard. The
wizard takes your preferences on several guided pages, runs and controls the recovery
process, and formats the resulting database by evaluating device resource files, device
interface files, and device interface data. You can access the LNS Database Recovery
Wizard by selecting Start>Programs>Echelon LNS Utilities>LNS Database
Recovery Wizard.

To recover a network database with your own LNS application, follow these steps:

1. Create a new Network object using the Add() method for the Networks collection.

Dim RecoveredNet as LcaNetwork
Set RecoveredNet = MyNetworks.Add("Recvrd","c:\DB", True)

2. Open the new network.

 RecoveredNet.Open()

3. Open the system, and set the NetworkInterface object contained in the System
object’s NetworkServiceDevice object to identify the network interface for the new
network.

Set RecoveredSystems = RecoveredNetwork.Systems
Set RecoveredSystem = RecoveredSystems.Item(1)
Set RecoveredNSD = RecoveredSystem.NetworkServiceDevice
Set RecoveredNSD.NetworkInterface = SelectedNI

4. Call the System object’s PrepareToRecoverFromNetwork() method. If objects
have been added to the Network object created in step 1, an exception will be
thrown. Set the recoverNetInterface parameter to True if you want the domain
signature and authentication key to be recovered from the network interface. Note
that this option is only valid when the network interface is a standard network
interface whose configuration is consistent with the network. If this parameter is set
to False, LNS will read the domain signature from the System object’s DomainId
property. In this case, you should make sure the DomainId property is set to a valid
value.

RecoveredSystem.DomainId = “32a0cf”
RecoveredSystem.PrepareToRecoverFromNetwork(False)

5. Open the system.

 RecoveredSystem.Open()

6. If the recoverNetworkInterface option was set to False and network
authentication is being used on the network being recovered, set the System object’s
AuthenticationKey property.

7. Optionally add objects, set properties, and call methods. This includes defining
DeviceTemplate objects, and setting network timers or other properties of the
System object. If you add device templates at this time, your recovered devices will
have more meaningful names for their device templates, and include more accurate
default settings.

Note that you cannot add any objects that consume network resources at this point,
such as AppDevice, Router, Channel or Subnet objects. This could create conflicts

LNS Programmer's Guide 259

on the network once it is recovered.

8. Call the RecoverFromNetwork() method. You can use the options parameter to
control the behavior of the recovery process. If the network being recovered is a small
network, you should specify the lcaRecoveryOptSmallNetwork option, which tells
the LNS Object Server to use a recovery algorithm optimized for small to medium-
sized networks. This algorithm uses domain-wide broadcasts to find devices. The
lcaRcoveryOptSmallNetwork option will work reliably with network containing
up to 64 devices, and may work well with more devices depending on your network
topology.

If the network being recovered has a very high traffic rate, you may want to specify
the lcaRecoveryOptForceOffline option, which tells the LNS Object Server to
force all devices off-line during the discovery process. In this case, all application
traffic stops and the devices will be free to listen to the recovery messages. Large
networks may generate too much traffic with domain-wide broadcasts so the
lcaRecoveryOptForceOffline network option uses subnet broadcasts, which
take much longer. The devices are left in the offline state when recovery is
complete. Note that these options may be ORed together.

RecoveredSystem.RecoverFromNetwork(False, lcaRecoveryOptSmallNetwork)

9. After network recovery has been completed, the system management mode will be set
to lcaMgmtModeDeferConfigUpdates. You need to set the system management
mode to lcaMgmtModePropagateConfigUpdates before resuming normal
operations. You can do so by writing to the MgmtMode property of the System object.

RecoveredSystem.MgmtMode = lcaMgmtModePropagateConfigUpdates

Note that you should thoroughly examine the LNS database to make sure that the
database is consistent and complete before you set the system management mode to
lcaMgmtModePropagateConfigUpdates.

10. Call the System object’s RestoreLicense() method to resume the LNS Device
Credit licensing model. The method takes a single parameter that indicates whether
the recovered network was installed using LNS. This parameter affects whether or
not LNS will charge any LNS Device Credits for the recovery. See chapter 13, LNS
Licensing, for more information on this.

 RecoveredSystem.RestoreLicense (True)

11. Configured devices recovered by the network recovery process will be stored in the
Discovered.Installed subsystem. Unconfigured devices will be stored in the
Discovered.Uninstalled subsystem. Once the network recovery has completed,
you can use the AddReference() method to add those devices to other subsystems,
as described in Chapter 6 of this document.

During the recovery process, the LNS global database will be locked to prevent accidental
modification while recovery is in progress. Other LNS applications should not make
changes to the LNS network database while the network is being recovered.

The recovery of a large network may take a long time. You can examine the System
object’s RecoveryStatus property to see how a network recovery is progressing. You
need to use a separate process to read the RecoveryStatus property. For more
information on the OnSystemNssIdle event, see Using the OnSystemNssIdleEvent on
page 314.

 LNS Programmer's Guide 260

If the recovery process is interrupted, for example if the service is canceled or the LNS
Server PC loses power, you can restart the recovery by invoking the System object’s
RecoverFromNetwork() method with the resumeRecovery flag set to True.

Application-Level Recovery
An LNS application can provide enhanced functionality to the recovery process by
uploading additional information from the devices on the network, if the network was
designed with this goal in mind. For example, a device may store its subsystem path and
device name in a SCPT_location configuration property. You can acquire this path by
reading the Path property of any Subsystem object stored in the AppDevice object’s
Subsystems collection. Note that the SCPT_location configuration property may not be
implemented in all of your devices.

The syntax of the string should be the subsystem path name :
subsystem[.subsystem]

For example, the following string specifies an device’s logical location as “Building 2”,
“Room 312”:

”Building 2.Room 312”

To provide an enhanced application-level recovery function, follow these steps:

1. Perform the network recovery, as described in the previous section.

2. Loop through each AppDevice object in the Discovered.Installed
subsystem of the recovered network. Start with the last device and end
with the first device in the subsystem’s AppDevices collection, since the
following steps will remove the devices from this subsystem.

For each device, perform these steps:

A) Obtain the LonMarkObjects collection of the AppDevice object’s
main interface (accessed through the Interface property). Search
for a LonMarkObject object with the TypeIndex property set to 0
(SFPTnodeObject). If found, obtain the ConfigProperties collection
object from this LonMarkObject, and try to locate a
ConfigProperty object with the TypeIndex property set to 17
(SCPT_location).

B) If unsuccessful in the previous step, repeat the previous step, but
search all LonMarkObject objects on the device, not just the node
object.

C) If unsuccessful in both previous steps, search the
ConfigProperties collection of the AppDevice for a
ConfigProperty object with the TypeIndex property set to 17
(SCPT_location).

D) When you find a SCPTlocation configuration property, parse it for
the device’s subsystem path and name. Create the subsystem if it
does not exist, and then invoke the AddReference() method to move
the AppDevice to the new subsystem. Set the Name property of the
AppDevice to the proper name, if it is available.

LNS Programmer's Guide 261

E) If a SCPTlocation configuration property was not found, move the
device to a default subsystem of your choice using the
AddReference() method.

3. Loop through each Router object in the Discovered.Installed
subsystem of the recovered network, and use the AddReference()
method move each router to a default subsystem of your choice. Start
with the last router and end with the first router in the subsystem’s
Routers collection, since this step will delete the routers from this
subsystem.

Recovery and Mirrored Connections
Mirrored connections contain segments that are mirror images of each other. For
example, a connection with hub network variable A and target B is a mirror of a
connection with hub B and target A. Typically, mirrored connection segments appear in
pairs, created by superimposed connections in complex connections.

Sometimes, network recovery introduces mirrored connections in place of the original
connections. This is a side effect of the network recovery process. When recovering a
network, the LNS Object Server cannot determine which network variables were hubs
and which were targets. It sees only the resultant connections. Thus, the LNS Object
Server assigns hubs to connections as best it can, in an attempt to minimize hub usage.
It is unlikely that the hub selection algorithm will reproduce the same hub/target set
that was used in creating the network. As a result, your application should not make any
assumptions as to the hub/target relationship when accessing, removing or modifying
connections on a recovered network. Interoperable tools should always examine both the
hubs and targets when accessing a connection on a recovered network, since the
hub/target relationships on the recovered network depend on the arbitrary results of the
network recovery.

 LNS Programmer's Guide 262

LNS Programmer's Guide 263

Chapter 11 - LNS Network
Interfaces

This chapter describes how to configure the various network
interfaces you can use with LNS. It also describes the
differences between standard and high performance network
interfaces.

 LNS Programmer's Guide 264

Network Interfaces Overview
Each Network Service Device contains a network interface. The Network Service Device
uses the network interface to communicate with the LONWORKS network, as the network
interfaces provides the physical connection between the network and the LNS Server.
Each network interface uses LonTalk messaging to communicate with the LONWORKS
network and the devices on the network.

This chapter contains information you will need when choosing a network interface. This
includes the following sections:

• Standard and High Performance Network Interfaces. This section introduces the
network interfaces that are commonly used with LNS. Some of these network
interfaces (Layer 5 network interfaces) are considered standard network
interfaces, and others (Layer 2 network interfaces) are considered high
performance network interfaces. This section describes the functional differences
between standard network interfaces and high performance network interfaces.

• Using xDriver Interfaces. This section provides details on network interfaces that
use the OpenLDV xDriver software to communicate with LONWORKS networks,
such as the i.LON 10 Ethernet Adapter and the i.LON 100 Internet Server. The
OpenLDV xDriver software is installed with the LNS Server software during the
LNS Turbo Edition installation.

• Using LONWORKS/IP Interfaces. You can configure a TCP/IP network card as
an LNS high performance network interface, and use it to connect to a network
via a LONWORKS /IP channel. In order to do so, you will need one or more
LONWORKS/IP channels connected by at least one LONWORKS router, such as an
i.LON 1000 Internet Server or an i.LON 600 LONWORKS/IP Server. To use a
TCP/IP card as an LNS network interface, you need to create a LONWORKS/IP
Interface device to represent the network card. You can do so with the
LONWORKS/IP tab of the LONWORKS Interfaces application in the Windows
Control Panel. You will also need to define the LNS PC as a member of the
LONWORKS /IP channel. This section describes how you can do so. LONWORKS/IP

Interfaces implement the ANSI/CEA-852 layer 3 routing protocol.

• Network Interfaces and Network Service Devices. This section describes the ways
a network interface might affect the performance of your Network Service Device.

Standard and High Performance Network Interfaces
An LNS network interface consists of two parts: the network interface hardware component,
and the network interface software driver. The network interfaces you can use with LNS
Turbo Edition are listed below. You can find more detailed information about these network
interfaces on Echelon’s website at: www.echelon.com/support/documentation/Manuals/.

PCLTA-20 The PCLTA-20 is a standard PCI card. There are
four versions of the card that include an onboard
transceiver (TP/FT-10, TP/XF-78, TP/XF-1250 or
TP-RS485), and one version that accepts a
standard modular transceiver (SMX) which may
be used with any media type for which an SMX
transceiver exists. The PCLTA-20 supports the

http://www.echelon.com/support/documentation/Manuals/

LNS Programmer's Guide 265

Windows plug-and-play standard. This hardware
may be used as an LNS high performance network
interface by selecting PCL20VNI from the NI
Application field of the LONWORKS Plug 'n
Play control panel. It can be used as a standard
interface by selecting NSIPCLTA from the NI
Application field.

PCLTA-21 Echelon’s PCLTA-21 card is a high performance
network interface for desktop and embedded
personal computers equipped with a 3V and 5V
32-bit PCI interface and a compatible operating
system. This network interface is designed for use
in networks that require a PC to monitor,
manage, or diagnose a network, and is ideal for
industrial control, building automation, and
process control applications. The PCLTA-21 card
features support for TP/XF-78, TP/XF-1250,
TP/FT-10, and RS-485 transceivers, downloadable
memory, a network management interface, and
Plug n’ Play capability with the Microsoft
Windows 2000 and Windows XP operating
systems. The four versions of the PCLTA-21
interface with integral twisted pair transceivers
support the TP/FT-10 (Model 74501), TP/XF-78
(Model 74502), TP/XF-1250 (Model 74503), and
TP-RS485 (Model 74504) channels, respectively.
This hardware may be used as an LNS high
performance network interface by selecting
PCL10VNI from the NI Application field of the
LONWORKS Plug 'n Play control panel. It can
be used as a standard interface by selecting
NSIPCLTA from the NI Application field.

PCC-10 The PCC- 10 is a type II PC (formerly PCMCIA)
card that includes an integral TP/FT- 10
transceiver. Other transceiver types can be
connected to the PCC-10 via external transceiver
"pods". The PCC- 10 can be used as an LNS high
performance network interface by selecting
PCC10VNI from the NI Application field of the
LONWORKS Plug 'n Play control panel. It can
be used as a standard interface by selecting
PCC10NSI from the NI Application field.

SLTA-10 The SLTA- 10 is a serial interface with built-in
twisted pair transceiver that connects to any host
with an EIA-232 (formerly RS232) port. It can
also connect to the host remotely using a Hayes
compatible modem. You can use the SLTA- 10 for
remote applications that cannot use the OpenLDV
xDriver software, or for portable hosts that do not
contain a type II PC card slot.

 LNS Programmer's Guide 266

Power Line SLTA The Power Line SLTA is an EIA-232 compatible
serial device that allows any PC with an EIA-232
interface to connect to and communicate with a
LONWORKS network. The Power Line SLTA can be
connected to host PC through a pair of modems
and a telephone network, allowing for remote
operations. It can be configured to answer
incoming calls from remote hosts, or to initiate
calls to remote hosts.

LTS-20 The LTS-20 SLTA Core Module is a 40-pin single
in-line module (SIM) that is an embeddable
version of the SLTA-10. The LTS-20 is
functionally equivalent to the SLTA-10. The LTS-
20 requires the addition of a LONWORKS
transceiver to communicate on a LONWORKS
network.

i.LON 10 Ethernet Adapter You can use the i.LON 10 Ethernet Adapter to
connect to devices on a LONWORKS network via an
IP network. You will need to use the OpenLDV
xDriver software subsystem to do so. For more
information on this, see Using xDriver Interfaces
on page 269.

i.LON 100 Internet Server You can use the i.LON 100 Internet Server to
connect to devices on a LONWORKS network via an
IP network. You will need to use the OpenLDV
xDriver software to do so. The i.LON 100 Internet
Server also contains a large set of applications you
can use, allowing you to use it as a network
controller and a network interface
simultaneously. For more information on this, see
Using xDriver Interfaces on page 269.

The PCLTA-20, PCLTA-21 and PCC-10 LNS network interfaces can be used as high
performance network interfaces, or as standard network interfaces. There are many
factors to consider when you decide which type of network interface you should use.

Using an LNS high performance network interface causes much of the LONWORKS
protocol processing to be performed on the PC containing the network interface, as
opposed to on the network interface hardware. This expands the capabilities of the LNS
network interface, and allows you to open multiple networks simultaneously with a
single network interface. When using a standard network interface, you can only access a
single network at a time.

In addition, when using a high performance network interface, your application can
perform up to 250 message transactions simultaneously. Standard network interfaces
can only perform one transaction at a time, and so they cannot start a new message
transaction while another is completing. The ability to perform multiple transactions
simultaneously is highly beneficial in large networks, where you may need to poll the
value of hundreds of separate network variables at a time.

NOTE: The i.LON 100 Internet Server supports up to 15 simultaneous transactions at a
time.

LNS Programmer's Guide 267

The following section describes some of the other differences in behavior between
standard network interfaces and high performance network interfaces.

Addressing
All devices that communicate on a LonTalk channel must have a Neuron ID and a
domain/subnet/node address. When using a high performance network interface, these
addresses are stored on the PC containing the network interface. Standard network
interfaces store these addresses on the network interface.

When a standard network interface receives a LonTalk message, it forwards the message
to the PC only if the destination address in the message matches one of the network
interface’s addresses. High performance network interfaces must forward all messages
received by network interface to the PC, as the LonTalk protocol stack running on the PC
is responsible for decoding network addresses. This means that high performance
network interfaces will send many messages to the PC that are ultimately discarded by
the PC. This may have performance implications, depending on the link between the
network interface and the PC.

On the other hand, a standard network interface performs more processing than a high
performance interface. This could also affect the overall throughput, depending on the
network interface’s processing speed.

Some network interfaces support making uplink calls when they receive messages
addressed to the interface (i.LON 10 Ethernet Adapter, i.LON 100 Internet Server, and
the SLTA-10 models). These are all standard network interfaces, since high performance
interfaces do not store their address on the interface. Consult the SLTA-10
documentation for more information on the SLTA-10. For more information on the i.LON
10 Ethernet Adapter and the i.LON 100 Internet Server in this document, see Using
xDriver Interfaces on page 269.

LonTalk Transactions
Sending a message using the request, acknowledged or unacknowledged/repeat
messaging services initiates a LonTalk transaction. An acknowledged or request message
transaction is completed when the acknowledgment or response to the message is
received, or when the transaction times out (based on the message transaction timers
and number of retries). An unacknowledged/repeat message transaction completes when
all of the repeats have been sent.

High performance network interfaces support multiple outstanding transactions for
subnet/node and group addressed messages. This means that LNS can send a network
variable fetch request using subnet node addressing to different devices simultaneously,
without waiting for responses to previously sent requests. This can substantially increase
the total polling throughput. LNS utilizes a secondary source subnet/node address when
sending Neuron ID/broadcast messages so that it can have a single outstanding Neuron
ID or broadcast message transaction, without impacting subnet/node or group addressed
messages. When using a high performance interface, LNS can support thousands of
simultaneous transactions. However, LNS dynamically adjusts the maximum number of
simultaneous transaction when there are signs of network congestion, such as late
responses and message failures. Note that LNS does not support multiple outstanding
message transactions that use the same destination address, and it does not support
multiple outstanding transactions that use Neuron ID or broadcast addressing.

 LNS Programmer's Guide 268

Most standard network interfaces can only support a single outstanding transaction at a
time. This means that in order to poll 2 network variables, the first poll must be
completed before the second can start. Note that unlike most other standard network
interfaces, an i.LON 100 Internet Server can support up to 15 simultaneous subnet/node
or group addressed transactions.

Number of Groups
When using a high performance network interface, a Network Service Device can be a
member of up to 256 LonTalk groups, which is the LonTalk group limit per network.
When using a standard network interface, a Network Service Device can be a member of
no more than 15 groups, because each group must be configured in a standard network
interface’s address table entry, and the interface is limited to 15 address table entries.

Supporting Multiple Networks
Each Network Service Device in an LNS network must have a unique Neuron ID and
domain/subnet/node address. Standard network interfaces support only a single Neuron
ID, and thus can only support a single Network Service Device in a single LNS network
at any given time. When using a high performance network interface, all addresses,
including the Neuron ID, are stored on the PC containing the network interface.
Therefore, a single high performance network interface can be used to support multiple
Network Service Devices in multiple networks.

A LONWORKS/IP Interface used to access a LONWORKS /IP channel must use a unique IP
address and IP port combination. This allows multiple LONWORKS/IP Interfaces to exist
on a single PC with a single IP network card. This in turn allows a single PC to have a
LONWORKS/IP Interface device for every LONWORKS /IP Channel it needs to access.

Neuron Ids
When operating as a standard network interface, each network interface has a unique
Neuron ID, which is stored in the network interface hardware. Thus, if a Network
Service Device is using a standard network interface, the Neuron ID assigned to its
network interface will only change when a new network interface is installed and
selected as the active network interface.

However, you should be aware that the Neuron ID for a high performance network
interface is not stored in the network interface hardware. Instead, LNS generates a
separate Neuron ID for each Network Service Device using the network interface, and
associates that Neuron ID with the Network Service Device.

This process could result in creating duplicate Neuron IDs (duplicates of other Network
Service Devices using high performance interfaces). However, the chances of generating
duplicate Neuron IDs in the same network are statistically miniscule. The Neuron ID
assigned to each Network Service Device using a high performance network interface is
stored in the Windows Registry of the PC running the LNS application. Usually, the
same Neuron ID will be used each time that Network Service Device is opened. However,
the Neuron ID is not backed up, since this would produce duplicate Neuron IDs. As a
result, moving a network from one PC to another (i.e. copying a network database and
moving it to another machine), or performing a network recovery with a client using a
high performance network interface, will result in generating a new Neuron ID for the
network interface.

LNS Programmer's Guide 269

You should note that if a high performance network interface is replaced with another
high performance network interface, the new network interface will use the same Neuron
ID as the old one.

Changing the network interface’s Neuron ID does not affect the operation of Local or
Lightweight clients. However, if the Neuron ID assigned to a Full client’s network
interface has been modified, it may be necessary to use the PreReplace() method to
replace the Network Service Device when using it to open a network. For more
information on this, see Using the PreReplace Method on page 166.

If the Neuron ID of the active network interface on the PC containing the LNS Server
has changed, a remote Full client using the RemoteNetworks collection may not be able
to connect to the server, since the RemoteNetworks collection may have the old Neuron
ID. In that case the remote Full client can reestablish the connection to the LNS Server
by opening the Networks collection. For more information on using these collections with
remote Full client applications, see Initializing a Remote Full Client Application on page
52.

Using xDriver Interfaces
You can use the OpenLDV xDriver to connect network interfaces such as the i.LON 10
Ethernet Adapter and the i.LON 100 Internet Server to a LONWORKS network via an IP
network. The OpenLDV xDriver is an integral part of LNS versions 3.07 and higher, and
of OpenLDV Versions 1.0 and higher.

The OpenLDV xDriver can provide authenticated and encrypted connections from an
LNS server to hundreds or even thousands of remote LONWORKS networks through
network interfaces like the i.LON 10 Ethernet Adapter and the i.LON 100 Internet
Server. As shown in Figure 11.1, the LNS Server accesses each network interface, and
the LONWORKS channels they are using, through a TCP/IP connection.

Figure 11.1 xDriver Overview

 LNS Programmer's Guide 270

In Figure 11.1, the LNS Server is using xDriver to connect to two i.LON 10 Ethernet
Adapters. The OpenLDV xDriver integrates with LNS at the same point as other LNS
network interfaces such as the PCC-10 and the PCLTA-20.

The OpenLDV xDriver supports scalable access to many network interface devices. The
default xDriver implementation uses the Windows Registry as a database to store the
information it requires to connect to each network interface. For small-scale
deployments, it is most efficient to use this as the xDriver database.

However, for larger deployments (defined to be more than 100 network interfaces), you
should conduct a performance characterization to determine whether the performance
achieved with the default Windows Registry based information store is acceptable for
your application. If this performance does not meet your needs, Echelon recommends
that you extend the default xDriver to use an external database of sufficient performance
as your network interface information store. xDriver includes an extension mechanism
that will support the external database of your choice.

If you do not plan to extend the default xDriver implementation to use an external
database, you can begin using the default xDriver to configure and connect to your
network interfaces, as described in Chapter 2, Using the Default xDriver, of the
OpenLDV Programmer’s Guide, xDriver Supplement. If you plan to extend the default
xDriver implementation, see Chapter 3, Extending the Default xDriver of the OpenLDV
Programmer’s Guide, xDriver Supplement.

The OpenLDV Programmer’s Guide and the OpenLDV Programmer’s Guide, xDriver
Supplement can be downloaded from Echelon’s website at:

http://www.echelon.com/support/documentation/default.htm

Using LONWORKS/IP Interfaces
As described earlier in this chapter, you can use an Ethernet network card combined
with the TCP/IP protocol as an LNS high performance network interface. This usually
requires the use of one or more routers, such as an i.LON 1000 Internet Server, or an
i.LON 600 LONWORKS/IP Server, as shown in Figure 11.2. To use an Ethernet card as an
LNS network interface and route LONWORKS messages over an IP network, you should
create a LONWORKS/IP Interface device with the LONWORKS/IP tab of the LONWORKS

Interfaces application in the Windows Control Panel.

The IP address and port used by the LONWORKS/IP Interface must also be defined as a
device on the channel containing the i.LON 1000 Internet Server or the i.LON 600
LONWORKS/IP Server in the Echelon LONWORKS/IP Configuration Server database.

http://www.echelon.com/support/documentation/default.htm

LNS Programmer's Guide 271

LNS Application and LNS Server PC

LONWORKS/IP (LAN, WAN)

LONWORKS
Device

LONWORKS
Device

LONWORKS
Device

LONWORKS
Device

Echelon LONWORKS/IP Configuration
Server PC

LONWORKS/IP Router
(i.LON 600 LONWORKS/IP Server or

i.LON 1000 Internet Server)

Traditional LONWORKS Channel (TP/FT-10)

Figure 11.2 LonWorks/IP Interfaces

NOTE: LONWORKS /IP channels in LNS Turbo Edition require the use of the new
Echelon LONWORKS/IP Configuration Server. As a result, if an i.LON 1000 Internet
Server user upgrades from LNS 3.0 to LNS Turbo Edition, they must also upgrade the
Configuration Server. To mitigate this requirement, the LNS Server installation for
Turbo Edition includes the new Echelon LONWORKS/IP Configuration Server. LNS Turbo
Edition and the new Echelon LONWORKS/IP Configuration Server support backward
compatibility with the i.LON 1000 Internet Server by allowing the creation of, and
connection to, i.LON 1000 Internet Server compatible LONWORKS /IP channels. If the
Echelon LONWORKS/IP Configuration Server is not running on the same PC as the LNS
Server installation, the Echelon LONWORKS/IP Configuration Server installer will be
available to LNS customers for download on the Echelon web-site.

For detailed instructions on how to use the LONWORKS/IP tab of the LONWORKS

Interfaces application, consult the application’s online help. For more information on the
Echelon LONWORKS/IP Configuration Server, consult the documentation for the i.LON
600 LONWORKS/IP Server.

Network Interfaces and Network Service Devices
As described in the Device Interfaces section on page 104, all application devices are
assigned a device template representing their external interface (i.e.DeviceTemplate
object) in the LNS database. Each device template has a unique program ID, and
specifies a device’s programmatic interface.

 LNS Programmer's Guide 272

LNS does not include external interface files for Network Service Devices. However, it
does create default DeviceTemplate objects for use by Network Service Devices. As
described earlier in this chapter, the network interface used by a Network Service Device
can affect the Network Service Device’s capabilities. Some of these capabilities (e.g.
maximum number of groups) affect how LNS will configure the Network Service Device.
As a result, Network Service Devices with different network interfaces and
programmatic capabilities use different device templates.

Therefore, switching from one network interface to another may require you to upgrade
the Network Service Device to use the device template for the new network interface.
Normally, LNS will perform the upgrade automatically when the system is opened.
However, depending on the configuration of the Network Service Device, switching from
a high performance to a standard network interface may result in dropping connections
to or from the Network Service Device. Specifically, if the Network Service Device is
involved in several multicast connections and uses more than 15 groups, switching to a
standard network interface will result in losing some of those connections.

If you do not want your client application’s Network Service Device to be upgraded
automatically, you can set the lcaFlagsManualNsdUpgrade flag in the Flags property
prior to opening the system. This will prevent LNS from automatically upgrading your
client application’s Network Service Device. This does not eliminate the need to upgrade
the Network Service Device. It only keeps LNS from performing the upgrade
automatically.

You can read the UpgradeRequirement property of the AppDevice object
representing a Network Service Device to see if an upgrade is required after the network
interface has been changed and the system has been opened. If the property indicates
that an upgrade is required, you should start a transaction and perform the upgrade by
calling the Upgrade() method on the AppDevice object. You should not specify a
DeviceTemplate object when upgrading a Network Service Device.

If the upgrade causes connections to be lost, you can display this information to the user,
and the user can decide whether to proceed with the upgrade and commit the
transaction, or open with a different network interface (cancel the transaction, and then
close the network). If the application keeps the database open without upgrading the
Network Service Device, the Network Service Device will not be properly configured,
which will result in communication errors during network management and monitor and
control operations.

You can examine the UpgradeStatus property of the Network Service Device’s
AppDevice object to review the changes made to the device's external interface during
the upgrade. For example, the UpgradeInfos property contains a collection of
UpgradeInfo objects, each one containing the status of one external interface
component on the old external interface.

The capabilities of a Network Service Device may also be affected by the version of LNS
software installed. Therefore, if the Flags property is set to
lcaFlagsManualNsdUpgrade, it may be necessary to upgrade the Network Service
Device after installing a new version of LNS. LNS Turbo Edition supports three different
types of Network Service Devices, depending on the network interface used. Each uses its
own template and program ID. Table 11.1 lists these types by program ID.

LNS Programmer's Guide 273

Table 11.1 Network Service Devices

Program ID Usage

90000010103800000 Used when the Network Service Device uses a high
performance network interface, a LONWORKS/IP interface,
or when LNS is opened in engineered mode.

90000010103800001 Used when the Network Service Device uses a standard
network interface.

90000010103800002 Used when the Network Service Device uses a standard
network interface that supports enhanced authentication
commands, such as an i.LON 100 Internet Server.

Note that when a network is opened in engineered mode, the Network Service Device
uses the same template as when the network is opened with a high performance network
interface, or a LonTalk IP interface. Therefore, LNS will upgrade the Network Service
Device when switching from engineered mode to use a standard network interface, or
when switching to engineered mode while using a standard network interface. Since the
template used by a Network Service Device may change with different releases of LNS,
an LNS application should never be designed to expect a Network Service Device to use a
particular device template, unless it will only be run in a tightly specified, closed system.

 LNS Programmer's Guide 274

LNS Programmer's Guide 275

Chapter 12 - Director

Applications and Plug-Ins

This chapter discusses the standards and development
methodology for creating interoperable LNS director and
plug-in applications.

 LNS Programmer's Guide 276

Introduction to the LNS Plug-In Model
All LNS applications achieve a level of interoperability by using the common API
provided by the LNS Server, and by using the LNS global database and shared network
databases. The shared network databases allow one LNS application to add a new device
to a network, and for all other LNS applications attached to the database to immediately
know about the new device. This level of interoperability is achieved whether the other
applications run on the same PC, on different PCs on the same LONWORKS network, or
on PCs connected to the LNS Server and database via a TCP/IP connection.

An LNS network tool could be constructed from a mixture of any of the following
components:

• Generic components created by tools vendors for viewing all objects in a
system and invoking commands on the objects.

• Device type specific components created by device manufacturers for
device configuration, monitoring, and control.

• System specific components created by system manufacturers for system
configuration and management.

• Generic components created by tools vendors for alarming, logging, and
trending.

In addition to providing a common API and database for these types of applications, LNS
defines standard interfaces that applications can use to communicate with each other.
These interfaces can be used to categorize LNS applications into the following types:

• Director applications: applications that call and initialize other LNS
applications. Director applications use the LNS Plug-In API to invoke the
other type of LNS application: plug-in applications. An example of a
director application is a generic system navigator that allows the user to
navigate through the subsystems in a system, select a device, and invoke
a command on the device. The command may be carried out directly by
the navigator, or the navigator may invoke a device plug-in to carry out
the command.

• Plug-ins: applications that are called by director applications and are
implemented as ActiveX automation servers. They typically implement
their own user interfaces, and may be able to operate independently as
stand-alone applications. Plug-ins are typically used for device type
specific applications (called device plug-ins), system-specific applications,
and generic applets such as alarming, logging, and trending. Most device
manufacturers implement plug-ins to simplify configuration, monitoring,
or control of their devices. Plug-ins also implement the LNS Plug-In API.

The interface between director applications and plug-ins consists of standard ActiveX
automation interfaces. An application can operate as an LNS plug-in and as an LNS
director by implementing both sides of the interface. The number of director applications
per system will typically be limited to provide a unified interface to the end-user.

The techniques introduced in this chapter allow an additional level of interoperability to
be achieved. They allow network tools to be built from component applications that
directly interact with each other. The methods and techniques introduced in this chapter
are described in more detail in the LNS Plug-in Programmer's Guide, which can be

LNS Programmer's Guide 277

downloaded from Echelon’s website at http://www.echelon.com/. You should consult this
manual before developing an LNS component application.

LNS Plug-In API
Director applications call plug-ins using the LNS Plug-In API. This ActiveX-based API
defines an automation object that provides a standard interface between a director
application and a plug-in. Director applications can launch plug-ins and communicate
with them using the methods and properties of the automation object. A set of ActiveX
exceptions is defined for passing back error information from the plug-in to the director.

Registering Plug-Ins
LNS plug-ins and device controls must be registered in the Windows Registry. Each plug-
in also registers one or more commands in an LNS database so that director applications
can find the plug-ins.

A special class of plug-in commands is provided which can register new plug-ins. This
allows plug-in registration to be fully automated. The installation program for a plug-in
only has to create a single entry in the Windows Registry for the plug-in. The plug-in
then performs the tasks required to register all of its commands within the LNS
database, and carries out any other initialization steps that it requires. This allows
registration to be bootstrapped, so that the first step can occur either before or after the
LNS Server has been installed.

Registering a Plug-In in the LNS Database
Plug-in commands are registered in an LNS database using ComponentApp objects.
Each ComponentApp object represents a single command that is handled by the plug-in.
A single plug-in can handle many commands. ComponentApp objects are contained
within the ComponentApps collections. The following objects within the LNS Object
Hierarchy have ComponentApps collections:

• ObjectServer

• System

• DeviceTemplate

• LonMarkObject

Registering a Plug-In in the Windows Registry
In accordance with Microsoft’s registration requirements for COM components, all plug-
ins must be registered in the Windows Registry. This includes generating a unique GUID
(Globally Unique Identifier) for each component, registering the GUID and OLE name in
the Windows Registry, and registering the type library information. Different
development tools provide varying amounts of support for the COM registration tasks.
The Visual Basic runtime generates GUIDs and type libraries automatically when a
Visual Basic OLE server is run. Visual C++ and MFC provide classes and macros to
assist the developer with these tasks.

http://www.echelon.com/

 LNS Programmer's Guide 278

Registering Plug-In Commands in the Windows Registry
Registration commands for plug-ins must also be registered in the Windows Registry.
Registration commands are plug-in commands automatically invoked by a director
application to register the plug-in application’s commands within an LNS network
database. Registration commands may also perform other initialization tasks required by
a plug-in, such as creating a device template, importing an external interface file for the
device template, and registering device controls with the device template. This is
described in more detail in the LNS Plug-in Programmer's Guide, which can be
downloaded from Echelon’s website at http://www.echelon.com/.

Accessing Extension Data
LNS client applications may require data that is not available in the LNS database, so
the applications can maintain their own databases. If they do, they must create their own
scheme for sharing the data between multiple instances of themselves on a network, and
must develop a mechanism for associating the data with data items in the LNS database.

LNS provides Extension objects to make maintaining application specific data within
the LNS database simpler. The data stored in the Extension objects can be associated
with objects within the LNS database, and LNS automatically provides a mechanism for
accessing the data from multiple clients on a network. The following LNS objects include
an Extensions collection that can be used for maintaining application specific data:
AppDevice, Channel, DeviceTemplate, LonMarkObject, Network,
NetworkServiceDevice, ObjectServer, Router, Subnet, Subsystem and
System.

Implementing an LNS Director Application
An LNS director application is an application that can manage and invoke LNS plug-in
applications, as described previously in this chapter. Typical LNS director applications
are generic network management or monitoring tools that use plug-in software to
delegate device-specific tasks such as device configuration. See the LNS Plug-In
Programmer’s Guide for more information about the LNS plug-in interface and API, and
about creating LNS plug-in applications. You may also find the example director
application included with LNS Turbo Edition useful when reviewing this section. For
more information on the example director application in this document, see Appendix C,
LNS Turbo Edition Example Application Suite.

This section discusses special considerations you will need to make when creating an
LNS director application. An LNS director application must be able to perform the
following tasks:

• Recognize newly installed or updated plug-in software, and manage the
completion of the plug-in registration process.

• For any applicable operation, determine the applicable plug-in software and
launch that application.

• Optionally support advanced plug-in management operations, such as
temporarily disabling a plug-in, deregistering plug-ins, etc.

http://www.echelon.com/

LNS Programmer's Guide 279

To accomplish these tasks, the LNS director application must have access to the
Windows Registry, to the LNS Object Server hierarchy, and must implement the client-
side of the LNS plug-in API.

Implementing the Client-Side LNS Plug-In API
The LNS Plug-In API is a simple COM interface that defines a list of properties and
methods by name. The LNS director application can reference an LNS plug-in
application using the plug-in application’s registered server name, and in doing so access
the plug-in application’s methods and properties.

The following code example illustrates how an LNS director application written in Visual
Basic can connect to a plug-in application. The plug-in is identified by its registered
server name. The proper way to retrieve a plug-in application’s server name is discussed
later in this section.

Dim MyPlugIn As Object
Set MyPlugIn = CreateObject(RegisteredServerName)

Note the COM client variable MyPlugIn is declared as Object. It is important that the
LNS director application uses late binding techniques when connecting to plug-in
software. The LNS plug-in API contains the definition of methods and properties by
name, but details no requirements or restrictions for the related DispID identifiers. Each
plug-in will generally use different DispID identifiers when implementing the various
properties and methods detailed in the LNS Plug-In API.

Once the director application has attached to the plug-in, the director can access the
plug-in application’s properties and methods by name. LNS plug-in applications launch
in their hidden state, allowing important properties to be set by the director. The director
will then typically make the plug-in visible by writing to its Visible property, as shown
in the following example:

Dim MyPlugIn As Object
‘ connect to the plug-in

Set MyPlugIn = CreateObject(RegisteredServerName)
SetFocus

‘ insert code to pre-set the plug-in as needed
‘ ...

‘ make plug-in visible:
MyPlugIn.Visible = true

Note that the director application also calls SetFocus after connecting to the plug-in.
Some plug-ins may take the focus away from the director when being launched, leaving
the director’s dialog defocused. Subject to details of the director’s implementation, it may
be a good idea to reclaim the focus in the interest of an uninterrupted user experience.

The plug-in manages its own lifetime independently, so the director need not terminate
the plug-in or reset it to the invisible (hidden) state. However, the director should release
its reference to the plug-in when it will not be needed in the foreseeable future, as shown
here:

Set MyPlugIn = nothing

 LNS Programmer's Guide 280

This will release the reference to the plug-in, and will therefore stop the director from
accessing the plug-in application’s properties and methods through the MyPlugIn
variable. However, releasing the reference will not terminate the plug-in itself. The LNS
Plug-In Programmer’s Guide contains a section called How Plug-Ins Know When To Exit
that addresses the plug-in lifetime considerations for the plug-in developer.

The director application is free to hold on to the reference. This will allow you to speed up
processing during the network commissioning phase, as plug-ins that are invisible but
attached do not need be re-loaded into memory. Therefore, the director can provide a very
responsive user-interface.

However, Echelon recommends that you release plug-in references using a timer-
controlled scheme to avoid blocking system resources with plug-ins. For example, the
director application could automatically release references to a plug-in 15 minutes after
the last use of that plug-in, and restart the timer each time the user demands the
services of that plug-in.

A complete example implementation of the client-side plug-in API is contained in the
example director application described in Appendix C of this document. The related
source code can be found in the Launch() method that is contained in the cCommand
class.

Detecting Existing Plug-Ins
Before you can use a plug-in to perform its prime service such as configuring a particular
implementation of a device, the plug-in must be fully registered within the Windows
operating system, and the LNS system. The LNS Plug-In Programmer’s Guide provides a
discussion of the plug-in registration process. This section provides a brief overview of
the process, focusing on the director’s role in plug-in registration.

When LNS plug-in software is installed, the installation includes registration of the plug-
in application’s COM server with the Windows Registry. Among other details, this
publishes the plug-in application’s Registered Server Name to the Windows system. At
the same time, the plug-in registers with an LNS-specific part of the Windows Registry,
by adding or updating data under the
HKEY_LOCAL_MACHINE\SOFTWARE\LonWorks\LCA\Plug-Ins key. The director detects
all subkeys stored under HKEY_LOCAL_MACHINE\SOFTWARE\LonWorks\LCA\Plug-Ins
in the Windows Registry. Each subkey relates to an LNS plug-in application. Following
is an example screenshot, showing the Plug-In Windows Registry key explored in the
Windows RegEdit.exe utility, highlighting the Echelon LNS Report Generator plug-in:

LNS Programmer's Guide 281

Figure 12.1 LNS Plug-Ins and the Windows Registry

Note that the default value for each plug-in listed in the Plug-In Windows Registry key
equals the plug-in application’s Registered Server Name. For example, Figure 12.1 shows
details for the Echelon LNS Report Generator plug-in, whose default value and
registered server name is “EchelonLNSReportGenerator.Application.”

The director application must inspect the Plug-In Windows Registry key. For each plug-
in found that has not already been fully registered, or that has been previously registered
with an earlier version, the director will register the plug-in as described in the next
section, Registering Plug-Ins.

Optionally, the director may also attempt to connect to all other plug-ins in an attempt to
verify the plug-ins presence. Detecting orphan Plug-In Windows Registry keys is
described in the Advanced Plug-In Management Tasks section later in this chapter.

A complete example implementation that retrieves all unregistered and previously
registered plug-ins is contained in the example director application described in
Appendix C of this document. Related source code can be found in the ListPlugins()
method that is contained in the FrmMain class.

Registering Plug-Ins
For each plug-in detected in the Plug-In Windows Registry key, the director application
investigates each ComponentApp object that can be accessed in the relevant
ComponentApps collection. For plug-ins advertising Scope as 2 (two) in the system
registry as shown in Figure 12.1, this is the ComponentApps collection that may be
retrieved from the System object’s ComponentApps property. Scope 2 is used by plug-in
software that requires explicit registration for each network database. Most plug-ins
specify Scope as 1 (one) in the system registry. In this case, directors use the
ObjectServer object’s ComponentApps property for maintaining the registration
information. This ComponentApps collection is a global collection stored in the LNS
global database that is mostly used for managing plug-ins software across multiple
director applications. The director performs these tasks:

• For each ComponentApp object found in the registration ComponentApps
collection, the director inspects the ComponentApp object’s RegisteredServer
property. If no ComponentApp object can be found that relates to the current
plug-in stored in the Windows Registry as the registered server name, the plug-in
must be registered with LNS.

 LNS Programmer's Guide 282

• If a ComponentApp object that relates to the current plug-in (stored in the
Windows Registry as the registered server name) can be found, but its
VersionNumber is less than the Version advertised in the Windows Registry,
the plug-in must be re-registered with LNS.

To register or re-register a plug-in, the director connects to the plug-in and calls its
SendCommand() method with the CommandID argument set to
lcaCommandRegister(50). When re-registering updated plug-ins, the director
application will then update the ComponentApp object’s VersionNumber property to
match the current version that is listed in the Plug-In Windows Registry key. When
completing the registration of a new plug-in, the director then creates a new
ComponentApp object in the global ComponentApps collection, and sets the properties of
the new object to reflect the new plug-in. At a minimum, the director sets the plug-ins’
CommmandID property to lcaCommandRegister(50), and sets the RegisterServer
property to the registered server name.

When the plug-in executes the SendCommand() method, the plug-in completes its own
application-specific application needs. This includes importing external interface files,
registering device resource files, or any other application-specific steps. Most
importantly, the plug-in creates additional ComponentApp objects that detail the
services the plug-in provides to the director. The director uses these ComponentApp
objects to detect registered plug-ins that are applicable for a certain task. This is detailed
in the next section.

A complete example implementation of the plug-in registration is contained in the
example director application described in Appendix C of this document. Related source
code can be found in the btnRegister_Click() event handler that is contained in the
frmMain class.

Detecting Applicable Plug-Ins
A Plug-in can be written to perform any of the operations listed in the
ConstCommandIDs constant. These operations may apply to any of the object classes
listed in the ConstClassIDs constant. Plug-ins can provide specialized handlers for a
wide range of operations on a variety of object classes, although not all combinations
make meaningful actions. Typical actions include configuring devices
(lcaCommandIdConfigure+lcaClassIdAppDevice) or configuring functional blocks
(lcaCommandIdConfigure+lcaClassIdLonMarkObject), but the list of possible
actions covers a much wider range.

Whenever the director is about to execute a certain user request that relates to any of the
operations possible for plug-in implementation, the director should determine whether
one or more plug-ins are available for that specific operation. This makes the list of
applicable plug-ins. A typical director implementation would proceed as follows:

• If no applicable plug-in has been found, the director invokes its own generic
solution for the task. For example, the LonMaker tool will launch the LonMaker
Browser tool to configure devices unless plug-in software is available to
accomplish the task.

• If one or more applicable plug-ins have been found, and exactly one plug-in has
the related ComponentApp object’s DefaultAppFlag set to True, the director
invokes that plug-in as the default operation.

LNS Programmer's Guide 283

In other cases, specifically for cases where no or multiple plug-ins have been marked as
the default provider, the director provides some user interface that lets the user to choose
between all applicable plug-in applications and the director’s own generic solution.

For operations that relate to a device, the DeviceTemplate object provides a
ComponentApps collection. For operations that relate to particular LonMarkObject
objects within a given device, the LonMarkObject object provides a ComponentApps
collection. Finally, the System object’s and ObjectServer objects’ ComponentApps
properties may be used to register plug-ins that apply to different items such as the
Channel or Subsystem objects, or that apply to a wider range of items. A generic
browser tool such as the LonMaker Browser facility is an example of a LNS plug-in
application that supports browse and configure commands for all devices, whatever their
type (program ID).

Thus, the director application must scan all applicable ComponentApps collection objects
to collect the list of applicable plug-ins, as illustrated in Figure 12.2.

 LNS Programmer's Guide 284

ObjectServer

ComponentApp

System

ComponentAppSubsystem

AppDevice

DeviceTemplate

ComponentApp

Interface

LonMarkObject

ComponentApp Start searching for
applicable plug-ins here, if
the action applies to a
functional block or some
sub-element of a
functional block

Continue search for
applicable plug-ins here.
Start search here unless
the action applies to a
functional block or a sub-
element thereof.

Continue search for
applicable plug-ins here.
Start search here unless
the action applies to a
device or a sub-element
thereof.

Continue search for applicable plug-ins
here. Start search here unless the action
applies to a specific system or a sub-
element thereof.

1

2

3

4

Figure 12.2 The ComponentApps Collection

Launching Plug-Ins
Once the director has detected the applicable plug-ins and chosen one, either
automatically or with the help of some suitable user-interface, the director needs to
connect to the plug-in. Then, it needs to initialize the plug-in by setting several of its
properties. Lastly, it needs to call the plug-in application’s SendCommand() method to
invoke the desired operation.

LNS Programmer's Guide 285

The SendCommand() method and related properties are detailed in the How Plug-Ins
Work - The Details section in the LNS Plug-In Programmer’s Guide.

When calling the SendCommand() method, you should note that some objects support
alternative addressing syntax used with the objectName parameter, as detailed in
Appendix C of the LNS Plug-In Programmer’s Guide. If multiple forms are defined,
director applications should prefer using the simplest syntax unless ambiguities arise, as
not all plug-in software may support all forms of addressing an object.

Advanced Plug-In Management Tasks
LNS Director applications may choose to implement advanced features and operations
related to plug-ins, including those briefly described below:

• Deregistration. For existing and registered plug-ins, the director might choose to
offer a deregistration command. In the presence of the plug-in to be deregistered,
plug-in controlled deregistration can be attempted by calling the plug-in
application’s SendCommand() method with lcaCommandIdUnregister
(51)value. Otherwise, in absence of the plug-in software, the director might scan
the network database(s) and remove ComponentApp objects that relate to the
plug-in to be deregistered. The director could then also remove the related Plug-
In Windows Registry key, and complete the uninstallation of the plug-in
application. This could be useful if the plug-in has been removed without proper
deregistration.

• Orphan Detection. Entries might be left in the Plug-In Windows Registry key
that no longer relate to existing plug-in software. This results from improper
removal procedures. Directors can determine orphan registry keys by trying to
connect to the advertised application using its Registered Server Name. Upon
failure, directors may offer to deregister the orphan tool as discussed previously.
Similarly, directors can investigate each ComponentApp object in the LNS global
database or in any of the LNS network databases, and try connecting to each
advertised plug-in. Upon failure, the tool might offer removal of the orphaned
ComponentApp objects.

• Re-registration. Sometimes, plug-in registration might be broken in an attempt to
correct a problem. For example, an integrator could attempt to solve a device-
specific problem by removing the related DeviceTemplate object from the
network database, and then re-creating it from scratch. This could break the
plug-in application’s registration. A well-written LNS director application should
offer a means to re-register a plug-in, even if it seems fully and correctly
registered.

• Pre-launch. Plug-ins may advertise a pre-launch capability in the Plug-In
Windows Registry key by providing a PreLaunch subkey set to 1. Plug-ins use
this flag to indicate that frequent use of the particular plug-in is anticipated.
Director applications are advised to launch the plug-in in the background and
before it is actually required, therefore providing for a responsive operation once
the plug-in needs to be invoked. However, Echelon recommends that you
disconnect from attached plug-ins after a certain timeout period, to prevent the
system from being occupied by unused but loaded plug-in software.

The LNS Turbo Edition software includes an example Director application. For more
information on this, see Appendix C of this document.

 LNS Programmer's Guide 286

Implementing an LNS Plug-In
An LNS plug-in is implemented as an ActiveX automation server. In Visual Basic, this is
done by creating a Sub Main, defining Sub Main as the startup form, and implementing
a public Application class.

Implementing an LNS Device Plug-In
Device plug-ins are a special class of plug-ins that are specific to a particular device type
(i.e. program ID). Device plug-ins provide an easy way for device manufacturers to
provide tailored software for their devices for performing configuration, monitoring, or
control functions specific to their devices.

Device plug-ins should be implemented as described in the Implementing an LNS Plug-
In section earlier in this chapter. This section provides additional guidelines you should
follow when implementing device plug-ins. You can also find more information about
device plug-ins in the LNS Plug-In Programmer’s Guide and the NodeBuilder Plug-In
Wizard documents.

Managing Device Configuration
Configuration data for a device is typically maintained by the configuration properties
stored on the device. This ensures that the device and the LNS database have a
consistent view of the device’s configuration, and allows the device to be easily replaced
when it fails. Any configuration data for the device that cannot be stored as a
configuration property within the device should be maintained as extension data, as
described in the Accessing Extension Data section earlier in this chapter. This ensures
that a plug-in can find this data, even if the user renames or moves the device or device
template within the LNS database. If the configuration data is extensive, the extension
data may consist of a key into a device specific extension database. However, Echelon
recommends the use of Extension objects, since the data stored in Extension objects is
accessible both locally and remotely.

LNS Programmer's Guide 287

Chapter 13 - LNS Licensing

This chapter describes the LNS licensing mechanism,
including how LNS applications register with the LNS Server
and how end-users consume and replenish LNS Device
Credits.

 LNS Programmer's Guide 288

Overview of LNS Licensing and Distribution
The LNS licensing model is based on LNS Device Credits. Each LNS Server PC contains
a number of LNS Device Credits, and you need one LNS Device Credit for each
application device you commission on a network. The LNS Object Server tracks these
LNS Device Credits automatically, and removes an LNS Device Credit from the credit
pool each time a device is commissioned. Credits may be purchased, added to servers,
and transferred between servers using the LNS Server utilities provided with the LNS
Application Developer’s Kit. LNS also provides a Demonstration Mode which does not
require the use of LNS Device Credits.

LNS Turbo Edition supports the standard, automated device credit management system,
as well as the legacy capacity-based licensing system used in LNS 1.0 and LNS 2.0.
Capacity-based applications built with LNS 1.0 or LNS 2.0 will use the LNS Device
Credit mechanism when running on LNS Turbo Edition.

The standard LNS Device Credit management feature offers several cost advantages for
the LNS developer. When you redistribute an LNS Server with your product with the
LNS Redistribution Kit, the LNS Server will include 64 LNS Device Credits by default.
After the end-user installs your product and reboots the target PC, the PC will have the
LNS Server installed, and will also have 64 LNS Device Credits by default. The LNS
Server redistribution is ready to run after the reboot, and does not require registration
with Echelon to operate. You should note that after installing your product and the LNS
runtime files, the user will need to initialize the LNS Server license to make the LNS
Device Credits visible to the LNS licensing utilities. Initialization can be accomplished by
opening a system with any LNS application, such as the LNS Server application.

Note that when you create your redistributable installation package with the LNS
Redistributable Maker utility, you can specify more than 64 LNS Device Credits (up to
512). See the Using the LNS Redistributable Maker Utility section later in this chapter
for more information on the utility.

If your application needs to commission devices, you must ensure that the
SetCustomerInfo() method has been called on the ObjectServer object before doing
so. You must do this before you open the system. This begins use of the standard LNS
Device Credit licensing mode. LNS requires that one LNS Device Credit is available each
time you commission a device on the network. When a device is decommissioned and
removed, an LNS Device Credit is returned back into the database. Thus, your end-user
does not get charged for deletions - only for the total number of devices managed by the
LNS Server. This is described in more detail later in the chapter.

NOTE: If you delete a network with the Remove() method, the network database will be
deleted. The LNS Device Credits consumed by all commissioned devices in that network
will be lost, unless those devices are first decommissioned. For more information on this,
see Removing Network Databases on page 253.

LNS Device Plug-in applications do not commission devices, and therefore developers of
LNS Device Plug-in applications do not need to be concerned about what licensing
management mechanism is in effect.

If end-users require more LNS Device Credits, they can use the LNS Server License
Wizard to purchase more LNS Device Credits from Echelon. Licensees of the LNS
Redistribution Kit product can also re-sell LNS Device Credits, subject to certain

LNS Programmer's Guide 289

minimum purchase requirements, with the Echelon Software License Generator product
separately available from Echelon. Contact your Echelon sales representative for details.

The end-user should also use the LNS Server License Transfer Utility to transfer the
LNS Device Credits and the license in order to move the LNS Server to another PC. The
LNS Device Credits and license are transferred together. It is not possible to move some
of the LNS Device Credits on a PC to another PC. You must move all of the LNS Device
Credits and the LNS Server license to the new PC.

The LNS Application Developer’s Kit, when registered, can reauthorize as many LNS
Device Credits on the development PC as you need for development purposes, without
requiring you to request more LNS Device Credits from Echelon. If you need more LNS
Device Credits for development purposes, run the LNS Server License Wizard, and follow
the prompts. A dialog will appear asking you if you would like to automatically authorize
yourself for more LNS Device Credits. Answer “Yes” and you will be granted more LNS
Device Credits. This auto-authorization is only available on a PC with a properly
registered LNS Application Developer’s Kit. Because this capability is recorded in the
same license required to use the LNS Server, transferring the license to another PC
would move this capability to the target PC.

Additional information about LNS Device Credits may be available on the LNS Home
Page at www.echelon.com/lns.

Demonstration Mode
When an LNS application is initialized, it starts running in Demonstration Mode. In
Demonstration Mode, each network is limited to a total of four devices, excluding the
LNS Server PC, and any Network Service Devices or routers installed on the network. As
long as the number of devices is within this limit, the LNS Object Server operates
normally in Demonstration Mode. You can add or remove devices, load applications, and
create connections between devices.

If you want to distribute demonstrations of your application, you should always
distribute them in Demonstration Mode. Check the software license agreement that
governs the use of this product to determine if you can distribute LNS Object Servers.

Standard Mode
The Standard Mode is the LNS Device Credit-based licensing model described earlier in
this chapter. When operating in Standard Mode, the number of devices operating on the
network must be less than or equal to the number of LNS Device Credits installed on the
LNS Server PC. As in Demonstration Mode, the number of devices excludes the LNS
Server PC, Network Service Devices, and routers.

In addition to the total number of LNS Device Credits, LNS Servers operating in
Standard Mode are also assigned a pool of deficit credits. Deficit credits are LNS Device
Credits beyond the number purchased that you can use. Typically, 500 deficit credits are
allocated to each network.

Networks whose LNS Object Server has a maximum deficit credit pool greater than zero
can continue to install devices, even when the regular supply of LNS Device Credits has
been exhausted. As soon as the application starts using deficit credits, the LNS Object
Server alerts the LNS application via the OnLicenseEvent event, starts a 14-day timer,

http://www.echelon.com/lns

 LNS Programmer's Guide 290

and begins tracking the number of deficit credits. For more information on the
OnLicenseEvent event, see Tracking License Events on page 291.

If the number of deficit credits in use is reduced to zero, either by installing more LNS
Device Credits on the LNS Server PC, or by removing devices from the network, the
timer will reset and the LNS Server will return to normal operation. If the timer expires
or the number of deficit credits used exceeds the maximum, the LNS Server will no
longer operate. In this case, you must upgrade the license by purchasing more LNS
Device Credits from Echelon or a distributor. Since the LNS Server will not even be
operable, you will not be able to remove devices and regain LNS Device Credits at that
point.

The minimum purchase is 50 LNS Device Credits, plus the number of deficit credits you
are using. When you purchase the additional LNS Device Credits, the LNS Server
License Wizard will automatically suggest a value that is equal to 50 plus the number of
deficit credits currently used. It is the responsibility of the LNS application to warn users
when they are in deficit mode, so they can purchase more LNS Device Credits or remove
devices from the network, as appropriate.

Entering the Standard Mode
To enter the Standard Mode, an application must invoke the ObjectServer object's
SetCustomerInfo() method before it opens the Object Server. The method takes two
parameters, a customer ID and key, as follows:
ObjectServer.SetCustomerInfo CustomerID, CustomerKey

The CustomerID and CustomerKey values are printed on the back cover of the LNS
Application Developer’s Kit CD-ROM jewel case. Remember that if you do not call
SetCustomerInfo() to enter the Standard Mode, your application will remain in
Demonstration Mode.

NOTE: Some legacy LNS applications may still use the SetCapacity() method. These
applications will be automatically switched to use the Standard Mode described in this
chapter as soon as the method is called. At that point, the application will use the LNS
Device Credits on the LNS Server PC to determine how many devices can be installed on
the system, as opposed to using a separate capacity for each system.

Protecting Your Keys
It is very important to protect the integrity of your customer ID and customer key. This
information is confidential and should be guarded as securely as any other confidential
information that you use. Do not use the customer key or customer ID as any form of
product key.

Viewing License Status
LNS applications can determine a system’s current licensing status by reading the
System object’s CreditInfo property. This returns a CreditInfo object contains the
following licensing-related properties:

• DaysRemaining: The number of days remaining before the license
expires. If deficit credits are in use, the value of this property will be 14
or less. The special value of 255 is normal, indicating that no deficit

LNS Programmer's Guide 291

credits are in use, and therefore there is no time limit. The special value
of 254 indicates that the application is operating in Demonstration Mode,
or that the application is a legacy (LNS 1.x) application, and there is no
time limit.

• DeficitCredits: The number of deficit credits currently being used.

• LicensedCredits: The number of LNS Device Credits licensed on the
LNS Object Server. This number does not include the number of deficit
credits allowed.

• LicenseType: The type of license in effect. A value of 0 indicates
Demonstration Mode is being used, or that you are running a legacy
(version 1.x) LNS application. A value of 1 indicates that Standard Mode
is being used.

• MaxDeficitCredits: The maximum number of deficit credits allowed
on the LNS Object Server. If this number is exceeded, the LNS Server
license will expire, and the LNS Server will cease to operate until
sufficient LNS Device Credits are added.

• UsedCredits: The number of LNS Device Credits currently in use. This
number does not include the number of deficit credits currently being
used.

Tracking License Events
LNS applications should notify users about certain licensing situations, such as when
they are using deficit credits and when the LNS Server's license has expired. That way,
users can take action before the expired license renders the LNS Server inoperable. For
these and other application-specific reasons, an LNS application may need to track
licensing events. To do so, LNS provides the OnLicenseEvent event.

To register for this event, invoke the BeginLicenseEvent() method, as follows:

MySystem.BeginLicenseEvent()

To cancel the receipt of licensing events, invoke the EndLicenseEvent() method, as
follows:
MySystem.EndLicenseEvent()

License Event Types
The OnLicenseEvent event returns five parameters. Two of these, the network handle
and system handle, identify the network and system on which the licensing event
occurred. The event also returns an updated CreditInfo object, as well as two integer
values indicating the event type and the number of LNS Device Credits debited or
credited by that event. The event types and the meaning of the corresponding count
values are the following:

• LIC_DEBIT: A debit has been charged to the available number of licensed
LNS Device Credits due to a device installation. The number of LNS
Device Credits charged is returned as a positive integer in the count
parameter. You can check how many LNS Device Credits are currently in
use by reading the UsedCredits property of the CreditInfo object
returned by the event.

 LNS Programmer's Guide 292

• LIC_DEFICIT: A credit or debit has been charged, and the number of
licensed LNS Device Credits has been exhausted. As described in the
Standard Mode section on page 289, the LNS Object Server will continue
to run for a 14-day grace period during which the deficits credits can be
used. Read the DaysRemaning and DeficitCredits properties of the
CreditInfo object returned by the event to determine how many deficit
credits are available, and how much longer the LNS Server license is
valid for. The count parameter contains the number of LNS Device
Credits being debited (if positive), or returned (if negative). LNS
applications are required to periodically raise a dialog warning the user
that the license will shortly expire, once this event is received.

• LIC_EXPIRED: The LNS Server's license has expired. This occurs when
the maximum number of deficit credits has been used, or when the 14-
day grace period initiated when the first deficit credit is used has expired.
The application is required to terminate at this point. If the expiration
was caused by a debit transaction, the count parameter returns the
number of devices successfully debited.

• LIC_CREDIT: A credit has been applied to the available number of LNS
Device Credits due to the removal of a device. This is reflected as a
decrease in the number of used LNS Device Credits. The number of LNS
Device Credits added is returned as a negative integer in the count
parameter.

Licensing and Network Recovery
The network recovery feature described in Chapter 10 can be used on any LONWORKS
network, whether it was installed by an LNS application or by some other kind of
network tool. If the network was installed by an LNS application, the network recovery
process should not deduct any LNS Device Credits, because this would result in an
overcharge (i.e. a device would be charged once during the original installation and once
during the network recovery). On the other hand, recovery performed on a non-LNS
network should charge for each device on the recovered network. Unfortunately, there is
no way for the LNS Object Server to determine whether or not the network being
recovered was installed by an LNS application.

The LNS Licensing Agreement charges the LNS application with the responsibility of
indicating whether or not a network was installed by an LNS application. To simplify
this process, the System object contains the RestoreLicense() method. You can call
this method after network recovery to restore the license.

The method takes an input parameter (wasLNS) that indicates whether or not the
recovered network was installed by an LNS application. A value of True indicates that
the recovered network was installed by an LNS application, and a value of False
indicates that it was not. For example, the following code indicates that the network was
installed by an LNS application, and so restores the license without deducting LNS
Device Credits during the recovery:
MySystem.RestoreLicense(True)

The System object provides the CommissionedDeviceCount,
UncommissionedDeviceCount, and UninstalledDeviceCount properties. These
properties indicate the number of devices that were recovered (commissioned) or
discovered in an unconfigured state (uninstalled) during the recovery process. When the

LNS Programmer's Guide 293

RestoreLicense() method is called with the wasLNS parameter set to False, the LNS
Server will debit LNS Device Credits based on the commissioned count.

Licensing and Device Manufacturing
In a manufacturing setting, you may want to load devices with the same configuration
information. The AppDevice object's Replace() method is a convenient way to
configure devices quickly in an "assembly line" fashion. The LNS License Agreement
specifies that the customer must use an LNS Device Credit for each device configured in
this way. However, the Replace() method does not automatically deduct LNS Device
Credits from the credit pool. To facilitate compliance with the license agreement, the
System object provides the DebitLicense() method. This method deducts the number
of LNS Device Credits specified by its count parameter.

For example, if 10 replace operations were performed, you could use the following code to
debit your LNS Device Credit pool:

MySystem.DebitLicense(10)

Testing Devices
The current version of the LNS License Agreement provides additional means to create
LNS-based manufacturing test tools that do not consume LNS Device Credits. Typical
production, calibration and test software will commission devices in a test network, and
then perform the necessary production steps. Since most LONWORKS devices should be
shipped in the unconfigured state, the production tool will decommission the device at
the completion of the burn-in and test phase:

MyDevice.Decommission()

As decommissioning returns the device credit, the entire manufacture tool consumes just
one credit for each device that is under test simultaneously.

Using the LNS License Utilities
The LNS Application Developer’s Kit includes two utilities that allow users to add or
transfer LNS Device Credits to their LNS Server PC. These utilities are the LNS Object
Server License Wizard and the LNS Object Server License Transfer Utility. These
applications are described briefly in this section. For more detailed information, see each
application’s online help.

Using the LNS Server License Wizard
You can use the LNS Server License Wizard to add LNS Device Credits to an LNS
Server. To do so, follow these steps:

1. Open the LNS Server License Wizard through the Echelon LNS Utilities group in the
Windows Programs menu on the PC running the LNS Server. The utility opens with the
dialog shown in figure 13.1.

 LNS Programmer's Guide 294

Figure 13.1 LNS Server License Wizard

2. This window contains the current license status of the PC running the utility, and the
number of LNS Device Credits available on the PC. Enter the number of LNS Device
Credits you want to add in the Enter credits to add text-box, and click the Next
button. This opens the order processing window shown in figure 13.2.

LNS Programmer's Guide 295

Figure 13.2 Order Processing Window.

3. The order processing window contains the information you need to provide to
Echelon to order additional LNS Device Credits. You can copy this information to a
Windows clipboard by clicking the Copy to Clipboard button. This generates an
order form containing the required customer information, which you can paste into a
document and send to Echelon (or an authorized distributor) via mail, fax, or email.

Once the order has been processed by Echelon, the Echelon License
Administrator will send a new application key. You should enter this key in the
Application Key textbox, and then click the Finish button to add the LNS
Device Credits to the LNS Server. While waiting for the new application key, do
not commission or remove any devices, or make any other changes to the network
you are adding the LNS Device Credits to. This will cause the PC key to change,
which will invalidate your new application key.

The LNS Application Developer’s Kit provides an option to bypass the application
key, and add new LNS Device Credits to your credits pool without making a
purchase. However, these credits are only valid on the development PC, and
cannot be transferred to LNS Servers that will be redistributed.

Once the credits have been added, the completion window shown in figure 13.3
will appear. Click Exit to close the utility.

 LNS Programmer's Guide 296

Figure 13.3 Upgrade Completion Window.

Using the LNS Server License Transfer Utility
You can use the LNS Server License Transfer Utility to transfer an LNS Server license
between two LNS Server PCs. The transfer is a 3-step process. To begin, open the LNS
Server License Transfer Utility through the Echelon LNS Utilities group in the Windows
Programs menu, and follow these steps:

1. The initial window displays a welcome message. Click Next to open the dialog
shown in Figure 13.4.

LNS Programmer's Guide 297

Figure 13.4 Transfer Step Selection Window

2. There are three tasks you will perform with this window. Select the task you are
currently performing, and click Next to continue.

These tasks must be performed in the order they are listed. You must perform
steps 1 and 3 are on the PC that will receive the transferred credits, and you
must perform step 2 on the PC providing the credits. A floppy disk or a shared
drive, such as a mapped network drive, is required to complete the transfer.

When you perform step 1, you will also need to select the drive the LNS Device
Credits will be transferred to. You will use the dialog shown in Figure 13.5 to do
so.

 LNS Programmer's Guide 298

Figure 13.5 Shared Drive Selection Window

3. Select the drive to act as the transfer location from the pull-down list, and click
Back to return to the dialog shown in Figure 13.4. Then, continue with Step 2 of
the transfer operation.

LNS Programmer's Guide 299

Chapter 14 – Distributing LNS
Applications

This chapter describes how you should redistribute your LNS
applications, including how to use the LNS Redistributable
Maker utility and how to install your LNS application.

 LNS Programmer's Guide 300

Distributing LNS Applications
If you are using the LNS Application Developer’s Kit, you can distribute your LNS
applications, but you cannot distribute any of the LNS runtime files installed on your
development PC. If you want to redistribute LNS applications, you must purchase the
LNS Redistribution Kit. When you install this product, the Echelon LNS Redistribution
Kit program directory is created. This directory contains the LNS Redistributable Maker
utility. This utility is not included with the LNS Application Developer’s Kit.

It is the responsibility of the developer to create the installation for an LNS
redistributable application. The LNS Redistributable Maker Utility produces an install
program that installs all the necessary LNS components, and creates the Echelon LNS
Utilities program directory on the target PC.

The required components vary depending on the LNS application. If the application will
be used solely as a remote client, then the LNS Server components are not required, but
the LNS ActiveX Control components are. In this case, the Redistributable Maker can
produce a smaller "remote client" installation. If the application can operate locally and
remotely, the Redistributable Maker produces a full LNS installation, which can install
both the complete and remote client versions.

Using the LNS Redistributable Maker Utility
The LNS Redistributable Maker Utility is installed as part of the LNS Redistribution
Kit. To use the Redistributable LNS Maker Utility, launch the application using the
shortcut in the LNS Redistribution Kit program group in the Windows Programs menu.
This opens the dialog shown in Figure 14.1.

Figure 14.1 LNS Redistributable Maker

LNS Programmer's Guide 301

1. Click Next to begin using the utility. This opens the dialog shown in Figure 14.2.

Figure 14.2 Redistributable Source Path Selection Dialog

2. Figure 14.2 illustrates the redistributable source path selection window. Select
the path of the source redistributables folder, and click Next to continue. This
opens the dialog shown in Figure 14.3.

 LNS Programmer's Guide 302

Figure 14.3 Redistributable Selection Dialog

3. Figure 14.3 illustrates the redistributable selection window. Select LNS Server
or LNS Remote, depending on whether your application will operate locally or
exclusively remotely. If you select the LNS Remote option, your application
must set the RemoteFlag property to True before opening the LNS Object
Server, as described in Chapter 4 of this document. If you select LNS Server,
your application can operate locally or remotely (meaning the RemoteFlag
property can be set to True or False).

Click Next to continue. This opens the dialog shown in figure 14.4.

LNS Programmer's Guide 303

Figure 14.4 Initial Credit Selection Dialog

4. The LNS Redistributable Maker can allocate a number of LNS Device Credits to
be available to the LNS Server installed with your application. Use the dialog
shown in figure 14.4 to determine how many LNS Device Credits will be
available. Once the LNS Server redistributable package is installed and
registered with a Type 3 license, the LNS Device Credits allocated in this step
will be enabled for the user.

Additional LNS Device Credits can be added by end-users using the LNS Server
License Wizard after they have installed and registered the product with a Type
3 license. Note that if the LNS Server redistributable files are installed on a PC
that already has an LNS Server license, the initial LNS Device Credits specified
in this dialog box will be disregarded, not added to the license on that end-user’s
PC.

Click Next to continue. This opens the dialog shown in Figure 14.5.

 LNS Programmer's Guide 304

Figure 14.5 Select Setup Package Destination Folder Dialog

5. Specify the location of the setup packages that are generated. If you specify a
folder name that does not exist, the LNS Redistributable Maker utility will
create that folder automatically. You can produce various redistributable setup
packages. For instance, you may want to sell different versions of your product,
where each version of the product differs by the number of LNS Device Credits
that are initially included with it.

Click Next to continue. You will then be prompted to finish the operation and
exit the application.

Adding the LNS Runtime to an LNS-based Product Installation
The LNS Redistribution Kit will allow you to generate sets of files you can use to install
either the “Echelon LNS Server” or the “Echelon LNS Remote Client” runtime from your
application’s installation. These new runtime redistributable packages have been
produced with InstallShield DevStudio 9 as Windows Installer installations. They will
automatically uninstall older, non-Windows Installer versions of the LNS runtime
components before installing the new runtime.

Each set of redistributable files includes the setup.exe installation launcher
application, and the Windows Installer companion DLL _SetupLNS.dll. Depending
upon your installation environment, you will probably find it convenient to install the
LNS runtime using one of these methods.

The correct approach for your installation depends upon the capabilities of your
application’s installation. The setup.exe application will check for Windows Installer
version 2.0 or greater, which is required for the new LNS runtime installations, and
update the Windows Installer runtime if it is a lesser version. If your installation is
based on Windows Installer, and will update Windows Installer when necessary, it does

LNS Programmer's Guide 305

not need to use setup.exe, and should use the simpler _SetupLNS.dll, as described in
the following sections.

The setup.exe application introduces a noticeable delay after the LNS runtime
installation progress dialogs are complete, potentially causing it to appear as if your
installation is complete before it actually finishes. For this reason, Echelon recommends
using _SetupLNS.dll in the Windows Installer environments where it is supported.

Even though Echelon recommends that you use _SetupLNS.dll to install the LNS
runtime, this document will explain the use of the setup.exe option first. Because this
option automates less of the installation process, using it requires a more comprehensive
description of the LNS runtime installation options, and is valuable for all LNS runtime
redistributors.

Using setup.exe
Since setup.exe should be used by all environments except Windows Installer based
installations, this document cannot assume any particular capabilities exist in the
runtime installation other than Windows Registry access. All inputs to the LNS runtime
installation and outputs from the LNS runtime installation are described in terms of
Windows Registry entries. For proper function, the setup.exe file should be kept in the
same directory on your source medium as the rest of the LNS runtime installation
redistributable files.

To embed the LNS Runtime installation into your LNS-based product installation, follow
these steps. Each step is described in detail in the following sections:

1. Preset the LONWORKS path

2. Preset the LNS network database path

3. Check the installed LNS version

4. Check the LNS runtime installation completion status

5. Install the version 3 Microsoft XML Parser

Step 1: Preset the LONWORKS Path
The “LonWorks Path” entry in the Windows Registry must be defined before you launch
the LNS Runtime installation, if you want to install to a LONWORKS path different than
the default. Although Echelon does not recommend changing this path, it may be
necessary in your particular product installation scenario.

The location from which the LNS runtime reads the LONWORKS path information is
stored in the following Windows Registry string value:

HKEY_LOCAL_MACHINE\SOFTWARE\LonWorks\LonWorks Path

This string value determines the location of the main “LonWorks” installation folder. The
LNS runtime files will be installed in subfolders of this folder. If this Windows Registry
entry does not exist, the default path will be [WindowsVolume]\LonWorks, where
[WindowsVolume] is the drive where the Windows operating system resides.

 LNS Programmer's Guide 306

Once the LONWORKS path key has been created, you cannot modify it to point to an
alternate folder. If the LONWORKS path key is changed after it has been initially set,
some or all of the Echelon software installed on your machine could malfunction.

For compatibility with all releases of Echelon products, the value of the LonWorks Path
entry should be a full path, including drive designation, and never end in a slash, “\”.

Step 2: Preset the LNS Network Database Path
Like LNS 3.0, LNS Turbo Edition requires that you log in as a member of the
Administrators user group when running the LNS runtime installations, or any
installation that embeds the LNS runtime installations. However, LNS 3.0 also required
that you log in as a member of the Power Users group to use LNS. In Turbo Edition, this
is no longer the case, as members of any user level can use LNS.

However, users will need the correct access rights to your network database folders in
order to read or write the network configurations using LNS. You can configure the LNS
runtime installation to allow LNS access to all Windows user levels to avoid this
problem.

You must specify the root directory of the network database directory tree in order for
the LNS runtime installation to enable network database access to all Windows user
levels. Of course, this directory must exist before launching the LNS runtime installation
in order to enable access. The network database path location should be set in the
following Windows Registry string value:

HKEY_LOCAL_MACHINE\SOFTWARE\LonWorks\LNS Runtime Installer\LNSDBPath

The value of the LNSDBPath entry should be a full path, including drive designation,
and never end in a slash, “\”.

Step 3: Check the Installed LNS Version

The setup.exe launcher application will check the installed version of LNS, and run
either a Windows Installer full installation or an upgrade installation, depending on
which product version is installed.

However, if a greater version of LNS is already installed, it will display the dialog shown
in Figure 14.6.

Figure 14.6 Echelon LNS Server Dialog

LNS Programmer's Guide 307

The statement, “The setup cannot continue” may be confusing to the users of your
installation, even if you ignore the return code from setup.exe and continue your
installation.

In order to avoid this dialog, you must check for this case before running setup.exe,
and avoid any attempt to install over a greater version of the LNS runtime. To do so,
your installation must read the LNS runtime version information at the following
Windows Registry key:

HKEY_LOCAL_MACHINE\SOFTWARE\Echelon\<LNS Runtime1>\Version

The version Windows Registry key is a string value in the format Mmmbbb, where M is the
major version number, mm is the minor version number, and bbb is the build number. The
LNS Turbo Edition version number will be in the format “320bbb”, where the final build
number will be visible in the first few lines of the LNS runtime readme.htm file.

If this Windows Registry key does not exist, the PC either does not have the LNS runtime
installed, or the LNS runtime is a pre-Windows-Installer version that can be freely upgraded
by LNS Turbo Edition as a full installation. So, the absence of this Registry key is also a
signal that the setup.exe install can be run.

Step 4: Check the LNS Runtime Installation Completion Status
After setup.exe is run, you can check the completion status of the LNS Runtime
installation by reading the following Windows Registry key string value:

HKEY_LOCAL_MACHINE\SOFTWARE\Echelon\<LNS Runtime>\Install Status

The value will be set to “Success” if the LNS runtime was installed successfully, and does
not require a reboot to complete. The value will be set to “Success-RebootNeeded” if the
LNS runtime was installed successfully, but a reboot is necessary in order to finalize the
installation. Your LNS-based product installation should force a reboot upon completion
in this case, or at least inform the user that a reboot is needed to complete the
installation.

Step 5: Install the version 3 Microsoft XML Parser
The LNS Turbo Edition runtime requires the version 3 Microsoft XML Parser. While
this exists on the newer Windows operating systems that are supported by Turbo
Edition, including Windows XP and Windows Server 2003, it does not exist on Windows
2000 (unless it has been updated with Internet Explorer 6.0).

Microsoft’s licensing of this redistributable is fairly flexible. However, they do not allow
redistribution of these components by users whose customers will then redistribute them
again. This prevents Echelon from installing them in the LNS runtime installations.

Users of the LNS runtime installations have two choices. They can either install the
version 3 Microsoft XML Parser in their installations, or they can require that systems
on which their products are installed include Internet Explorer version 6.0 or greater.

1 <LNS Runtime> should be either “Echelon LNS Server” or “Echelon LNS Remote
Client”, depending on the LNS runtime installation you are using.

 LNS Programmer's Guide 308

The LNS Application Developer’s Kit and LNS Server Edition products both install the
version 3 Microsoft XML Parser.

Using _SetupLNS.dll
_SetupLNS.dll is a Windows Installer DLL. This means that if it is embedded within
your Windows Installer based installation, you can call its functions within your Custom
Actions. No parameters are passed to Windows Installer DLLs. They have access to your
installation’s Windows Installer environment, including any Windows Installer
properties declared within your installation, so data can be passed via Windows Installer
properties.

To install the LNS Runtime you need to create a Custom Action to call into
_SetupLNS.dll, which will direct the Windows Installer to run these sub-installations.
You should add the _SetupLNS.dll that comes with your LNS redistributable
components to the Binary Table of your installation. This is done within an InstallShield
DevStudio 9 project by going to the “Support Files” item under the “Behavior and Logic”
item, and adding the _SetupLNS.dll file to the list of files in the “Language
Independent” files area.

The Custom Action properties for calling _SetupLNS.dll are shown in table 14.1 below.
There are two public entry points in this DLL. The entry point SetupLnsServer should
be used for installing the “Echelon LNS Server”. The entry point
SetupLnsRemoteClient should be used for installing the “Echelon LNS Remote
Client”.

Table 14.1 Custom Action Properties

Property Description

DLL
Filename

<PATH_TO_HELPERDLLS>_SetupLNS.dll

Function
Name

SetupLnsServer

Custom
Action Type

Call into an MSI DLL

Location Stored in the Binary Table

Return
Processing

Synchronous (Check exit code)

In-Script
Execution

Immediate Execution

Execution
Scheduling

Execute only once

Install UI
Sequence

After MaintenanceWelcome

Install UI
Condition

Not REMOVE

LNS Programmer's Guide 309

Property Description

DLL
Filename

<PATH_TO_HELPERDLLS>_SetupLNS.dll

Install
Execute
Sequence

<Absent from sequence>

The _SetupLNS.dll component provides the following features:

1. The _SetupLNS.dll custom actions take care of all LNS version checking that is
required to install an LNS runtime of a particular version. The version that it
attempts to install is based on the _SetupLNS.dll file version, so this DLL
should be re-imported into your installation when you generate a new version of
the LNS runtime installation with the LNS Redistribution Kit. For example, if
the LNS Redistribution Kit is patched within a future LNS service pack in order
to generate new LNS runtime installations, this DLL should also be re-imported.

2. The user may define a Windows Installer property named LnsDbPath to pass in
the LNS network database path described in the Using setup.exe section, instead
of writing to the Windows Registry.

3. The DLL will define a Windows Installer property named
LNSREQUIRESREBOOT and set it to the string value “1” if the LNS runtime
installation requires a reboot for completion. Note that your LNS-based product
installation should either force a reboot or inform the user that a reboot is
necessary. The LNS runtime installation case that requires a reboot will return a
success code to the Custom Action that calls it, filtering out the
ERROR_SUCCESS_REBOOT_REQUIRED error return from MsiExec.exe.

Table 14.2 shows an example of using this notification from your product
installation with an InstallShield DevStudio 9 sequence table entry. The
ScheduleReboot standard action may be found by going to the “Sequences” item
under the “Behavior and Logic” item, then expanding the actions found in the
Installation Execute sequence. When this standard action is run, directly after
completion of a successful installation, it informs the user that a reboot is
required, and gives the choice of rebooting now or later.

Table 14.2 Using LNSREQUIRESREBOOT Example

ScheduleReboot Standard Action (Installation Execute Sequence)

DLL
Filename

<PATH_TO_HELPERDLLS>_SetupLNS.dll

Sequence
Number

6410

Condition ISSCHEDULEREBOOT or LNSREQUIRESREBOOT

Comments ScheduleReboot

 LNS Programmer's Guide 310

In order to find the LNS runtime installation files when the Custom Action is called, the
_SetupLNS.dll makes the following assumptions about the configuration of your
installation and installation medium. It assumes that there is a Windows Installer
property named SETUPEXEDIR defined, and that this property gives an absolute
directory location on your source medium. It assumes that it will find the LNS runtime
sub-installation in the directory “LNS Server” (for the Echelon LNS Server) or “LNS
Remote Client” (for the Echelon LNS Remote Client) of the directory defined in
SETUPEXEDIR. Recent versions of InstallShield set the SETUPEXEDIR property
automatically for installations that are run from their standard setup.exe, making it this
convention particularly useful for InstallShield users. If you are not using InstallShield
for your Windows Installer development, this property may also be defined and set
manually within your installation in order to point to the proper medium location of the
LNS runtime installation.

The version 3 Microsoft XML Parser installation is also available as a merge module for
Windows Installer based installations, and it should be installed separately by your
installation, just as in the setup.exe case. The merge module, named msxml3.msm, is
included in both InstallShield DevStudio 9 and recent versions of Visual Studio.

LNS Server and Remote Client Runtime Incompatibility
The LNS Server and LNS Remote Client runtimes are mutually exclusive, and should
never be installed on the same PC at the same time. The LNS Server installation is a
superset of the LNS Remote Client installation, and may safely be installed after
removing any Windows Installer based LNS Remote Client installation on a PC.
Likewise, the LNS Remote Client installation can be safely omitted if the Windows
Installer based LNS Server installation already exists on the PC.

Neither of the LNS runtime installations currently checks for the existence of the other
installation in order to force remedial action in this case, but they may be modified to
provide that function in the future. Your LNS-based application installation may provide
this check now if this case is likely to arise in your installation scenario.

Windows Installer and InstallShield Caveats
When embedding the new LNS Server or LNS Remote Client runtime installations into
your LNS application's installation, do not use the "Nested Installation" option of
Windows Installer. This will cause the LNS Server installation to become too tightly
coupled to your application. It will not allow the LNS runtime installation to be patched
or upgraded, or to be installed by another application on the same PC, so it is not an
interoperable way to install the LNS runtime.

Windows Installer does not fully support concurrent installations, but the LNS runtime
installations may be run during some portions of some types of Windows Installer based
installations. For example, in InstallShield DevStudio 9, the LNS Server may be
installed as a Custom Action during some portions of the UI sequence of a “Basic MSI
Project.” Because of the InstallShield-Windows Installer runtime architecture, the LNS
Server can only be installed by an “InstallScript Windows Installer Project” as a Nested
Installation. Therefore, an “InstallScript Windows Installer Project” type project may not
be used to install the LNS runtime.

LNS Programmer's Guide 311

Chapter 15 - Advanced Topics

This chapter addresses a number of advanced topics that are
not described in the previous chapters. This includes using
LNS to perform file transfers, using the OnSystemNssIdle
event, portable and remote tool development guidelines,
multi-threading, avoiding memory leaks with LNS, and
creating interoperable LNS client applications.

 LNS Programmer's Guide 312

File Transfer
Each System object contains a FileTransfer object. This object represents a LonMark
file transfer session involving a group of application devices. For example, you might set
up a file transfer to upload log files from some of the application devices on your network.
You should note that file transfer can only be performed with devices that implement the
LonTalk file transfer protocol, and that implement user-files.

NOTE: Configuration property template and value files are not user-files. To access
configuration property value files, use the UploadConfigProperties() or
DownloadConfigProperties() methods that are described in Chapter 6 of this
document.

You can use the file transfer process to write a file to a device, or to read a file from a
device. Both operations require your application to be attached to the network, and for all
participating devices to be commissioned and online. To read a file from a device, follow
these steps:

1. Obtain a FileTransfer object from the System object's FileTransfer
property.

Dim MyFileTransfer as LcaFileTransfer
Set MyFileTransfer = System.FileTransfer

Note the System object’s FileTransfer property returns FileTransfer
objects by value, not by reference. Thus, you get a new FileTransfer object
each time you query the property.

2. Set the properties of the FileTransfer object to specify the characteristics of
the file transfer session. This includes the file index of the file to be transferred,
the size of the buffer to receive the file, the receive and transmit time-out periods,
and the starting position within the file. Note that if you set the starting position
to a non-zero value, the file transfer will use random access. This is an optional
feature of the LonMark file transfer protocol that is not implemented by all
devices.

MyFileTransfer.FileIndex = 2
MyFileTransfer.ReadBufferLength = 40000
MyFileTransfer.RxTimeOut = 0
MyFileTransfer.TxTimeOut = 0
MyFileTransfer.StartPosition = 0

If you set the RxTimeOut and TxTimeOut properties to 0, LNS will calculate the
values for those properties automatically, based on the network topology and
channel delays on your network.

See the LNS Object Server Reference Help file for a complete list of the properties
of the FileTransfer object.

3. Select the device you want to read the file from, and call the AddTarget()
method. Pass in the device containing the file as the appDeviceObject element.

 MyFileTransfer.AddTarget(appDeviceWithFile)

4. Read the file from the target device into a buffer on your application.

LNS Programmer's Guide 313

Dim fileBuffer as Variant
Dim byte1 as Byte
fileBuffer = MyFileTransfer.ReadFile()
byte1 = fileBuffer(1)

The ReadFile() method returns an array of bytes of the length transferred.
Your application should query the returned Variant to determine the number of
available bytes, which could be as little as 0 if an error occurred.

To write a file to a device or group of devices, follow these steps:

1. Obtain a FileTransfer object from the System object's FileTransfer
property.

Dim MyFileTransfer as LcaFileTransfer
Set MyFileTransfer = System.FileTransfer

2. Set the properties of the object to specify the characteristics of the file transfer
session. Random access will be used in the file transfer if the StartPosition
property is set to a non-zero value. This requires that the device you are writing
to supports random access file transfer. Sequential file access will be used if the
StartPosition property is set to 0.

MyFileTransfer.RxTimeOut = 0
MyFileTransfer.TxTimeOut = 0
MyFileTransfer.StartPosition = 0
MyFileTransfer.FileIndex = 0

If you set the RxTimeOut and TxTimeOut properties to 0, LNS will calculate the
values for those properties automatically, based on the network topology and
channel delays on your network. See the LNS Object Server Reference Help file
for a complete list of the properties of the FileTransfer object.

3. Select the device you want to write the file to, and call the AddTarget() method.
Pass in the device containing the file as the appDeviceObject element

 MyFileTransfer.AddTarget(appDeviceReceivingFile)

4. Write the file to the device.

 MyFileTransfer.WriteFile(fileBuffer)

NOTE: You can use this procedure to write a file buffer to more than one application
device at a time, by repeating step 3 for each device to be written to. The file index
written to, and the file buffer to write, must be the same for all target devices. In order to
write to more than one application device at a time, an output network variable of type
SNVT_file_req on the LNS Server’s Network Service Device must be bound to the file
request input network variable on each of the target devices for the file transfer. In
addition, an input network variable of type SNVT_file_status on the LNS Server’s
Network Service Device must be bound to the file status output network variable on each
of the target devices. If random access is used for the file transfer, then an input network
variable of type SNVT_file_pos on the NetworkServiceDevice object of the LNS Server
must be bound to the file position input NV on each of the targets. If necessary, you can
add these network variables to the Network Services Device with your LNS application.
See the Creating Dynamic Network Variables section for instructions on this.

You should also be aware that LNS does not support writing to the LonMark
configuration property template or value files using file transfer. The template file

 LNS Programmer's Guide 314

should never be updated, as this defines the application interface. The configuration
property value file must be updated with ConfigProperty objects or with the
DownloadConfigProperties() method to ensure that the LNS database is kept in
synch with the values in the configuration value file. For more information on this, see
Downloading and Uploading Configuration Properties on page 125.

Using the OnSystemNssIdleEvent
You can use the OnSystemNssIdle event to allow your application to execute code while
the LNS Server is busy completing an operation. This event is useful for refreshing
displays, and for providing a cancel option for operations that take a long time.

Call the System object’s BeginNssIdleEvent() method to enable OnSystemNssIdle
events. This method takes a single parameter that specifies the maximum number of
milliseconds between calls to the OnSystemNssIdle event handler. This event will then
be fired at that interval while your application is waiting for lengthy network operations
to complete. Instances of this event will be returned synchronously, and if your
application does not handle the event in a timely manner, then your application may
hang.

This event may be useful during any lengthy operation, such as when you change the
value of the MgmtMode property from lcaMgmtModeDeferConfigUpdates to
lcaMgmtModePropagateConfigUpdates, if you are loading a device’s application
image, or if you are commissioning a device. The main thread of your application will
need to wait for these operations to complete before moving on, so you could use this
event to refresh your client application’s display, so that the user knows it is not stuck.
However, your application should be prepared to use this event at any time. Even a
simple modification that does not normally consume a large amount of time may be held
up because of a lengthy transaction started by another LNS application.

The LNS calls you can make from within the handler for this event are limited to the
following. You can access the ServiceStatus property to determine the status of the
service LNS is trying to perform. If a transaction is taking too long for LNS to execute,
you can cancel it by calling the CancelTransaction() method from the event handler.
Or, if you are performing a network recovery, you could access the RecoveryStatus
property from the event handle to determine the status of the network recovery.

You could also use an event handler for the OnSystemNssIdle event to refresh your
application display. For example, Visual Basic will sometimes partially erase a form
while the Object Server is busy. To prevent this, the following Visual Basic example
implements an OnSystemNssIdle event handler that calls the Refresh() method for
the active form.
Private Sub lcaOS_OnSystemNssIdle()
 Screen.ActiveForm.Refresh

End Sub

To turn off idle events, call the System object’s EndNssIdleEvent() method.

Developing Remote Tools
All LNS applications should be designed to support both local and remote operation.
Since remote operations may take more time to complete than local operations, your

LNS Programmer's Guide 315

application should provide feedback and the ability to cancel operations. For example,
when displaying a list box of devices in the system, you could provide a Cancel button
and display an hourglass while creating the list.

When operating remotely, your application should also disable operations that are not
supported remotely to prevent the user from selecting them. For example, if your
application provides a network recovery command, this command should be disabled
when running remotely. The LNS Object Server Reference help file contains a help page
for every LNS object, property, method and event. Each help page indicates whether or
not the object, property, method or event it describes is available on remote clients.

To improve remote performance, your application should cache frequently accessed
objects such as the current system and subsystem objects, and be careful not to
unnecessarily repeat object references. For example, the following statement within a
loop will require repeated references to the LNS Server from a remote PC:
Dim MyNVs As LcaNetworkVariables
Dim MySubsystem As LcaSubsystem
Dim MyDevices As LcaAppDevices
Dim MyDevice As LcaAppDevice
Set MyDevices = MySubsystem.AppDevices
Set MyDevice = MyDevices.Item(“Sunblind”)
Set MyNVs = MyDevice.NetworkVariables
Set MyNV = MyNVs.Item(i)

Each iteration through the loop will call constructors and destructors on the LNS Server
PC for the AppDevices collection, the AppDevice object, the NetworkVariables
collection, and the NetworkVariable object. To significantly increase performance,
fetch the AppDevices collection, AppDevice object, and NetworkVariables collection
once outside the loop with the following statements:
Dim MyNVs As LcaNetworkVariables
Dim MySubsystem As LcaSubsystem
Dim MyDevices As LcaAppDevices
Dim MyDevice As LcaAppDevice
Set MyDevices = MySubsystem.AppDevices
Set MyDevice = MyDevices.Item(“Sunblind”)
Set MyNVs = MyDevice.NetworkVariables

The statement within the loop can be changed to the following, eliminating most of the
constructor and destructor calls:
Set MyNV = MyNVs.Item(i)

You can subscribe to the OnChangeEvent event to keep your application informed of
changes to the database that may affect your cached objects.

Developing Mobile Tools
If your network tool is designed to be mobile and it is used in a multi-channel network, it
needs to provide special support. This is required to inform the LNS Server that your
application may move, and to tell the LNS Server when your tool has moved. If your
application is running on the same PC as the LNS Server, then it must inform the
system that the LNS Server has moved, so that the LNS Server can update the Network
Service Device’s network address to be consistent with the channel it has been moved to.
These issues only arise on multi-channel networks.

 LNS Programmer's Guide 316

Registering a Mobile Application
Mobile network tools should set the PingClass property of their
NetworkServiceDevice object to either PingClassMobile or PingClassTemporary.
Use PingClassMobile if your application is a permanent part of the network (i.e. it will
always be somewhere on the network), but may move from place to place. The LNS
Server checks for the presence of mobile devices at the highest frequency, by default
every minute.

If your application is just being attached to the network for temporary use (as may be the
case for a maintenance tool), use PingClassTemporary. The Object Server checks for
temporary devices at a slightly lower frequency, by default every two minutes.

Moving a Mobile Application to a New Channel
The steps you must take when moving a mobile application from channel to channel
depend on whether it is a remote or local LNS application.

If your application is running locally, then it must tell the system that it has moved so
the LNS Server can update the Network Service Device’s network address to be
consistent with the new channel. This is done by calling the PreMove() method , and
then calling the PostMove() method. The PostMove() method must be invoked after
the device has physically been moved.

If your application is running as a remote Full client, you should not use the PreMove()
and PostMove() methods in this fashion. This is because the application would not be
able to invoke the PostMove() method after it has moved, since intervening routers may
not pass on the messages in most cases. Instead, the application should re-attach itself to
the network by closing the system and network, and then re-opening the network and
system after the device has physically been moved. During the open, the LNS Server will
implicitly invoke the PreMove and PostMove methods to move the NSI along with all of
its connections to the new channel.

If your application is running as a remote Lightweight client, there is no need to do
anything when moving the application. Since the Lightweight client uses the same
Network Service Device as the LNS Server, its location is irrelevant to LNS.

Multi-Threading and LNS Applications
LNS uses Single-Threaded Apartments (STA) only. It does not support Multi-Threaded
Apartments. This means that client threads that access LNS are created as STA threads
only. If you are developing an LNS application using Visual C++ or Microsoft Visual
Studio .NET, you must create the threads that will access LNS in a Single Threaded
Apartment.

If you are using Visual C++ or Microsoft Visual Studio .NET and want to write an
application that will use multiple threads to access LNS, each thread must initialize
COM as an STA thread. You will need to marshal the object references received from
LNS in one thread to any other threads the application is using.

If you are using Visual C++ or Microsoft Visual Studio .NET, you can set the
lcaFlagsDirectCallback flag in the Flags property of the Object Server to use direct
callback within your application. When using direct callbacks, all event handling

LNS Programmer's Guide 317

functions will be executed by an internal LNS thread, as opposed to the thread that
instantiated the Object Server. While it is usually more efficient to use direct callback,
especially when writing a monitor and control application, or an application that you
expect to receive a large number of events, you should be aware that this turns the
application into a multi-threaded application. This means that these handler functions
must not call back into LNS, and the client application must be written to properly deal
with multiple threads executing concurrently. Note that this applies to all events, not
just monitoring events.

For more specific information on multi-threading with COM, consult the documentation
for the development environment you are using with LNS.

Avoiding Memory Leaks with LNS
If you are using a Visual C++ based development environment to create an LNS
application that receives LNS events, you need to make special considerations in some
situations to avoid memory leaks. Due to Microsoft's COM referencing standards, objects
returned as elements in an event are owned by LNS, not by the application that received
the event. As a result, the client application needs to increment the reference count for
each object received in an event handler in order to keep a copy of that object after the
LNS event handler has returned.

Before discussing objects passed by event handlers further, consider how objects that are
returned when you invoke an LNS method or access an LNS property are handled.
Objects returned by properties and methods are owned by the client application, and
LNS increments the reference count for these objects automatically as copies of the
objects are created and destroyed. Although LNS increments the object's reference count
before passing it to the client application, it is up to the client to call Release() on the
object before removing it from memory. This decrements the reference count. Different
COM client wrappers such as MFC and ATL may handle this differently.

It is important to realize that how objects are freed after being passed through the event
mechanism is different than for objects returned through method invocation or property
access. LNS does not increment the reference count for objects passed to an application
via events. If you want your application to keep an object returned via an event longer
than the duration of the event-handling function, you need to call AddRef() on that
object, so that the object will not be removed from memory when the event-handler exits.
You must also call Release() when you are done with the object, to ensure that it is
properly removed from memory.

All client applications must follow COM reference count rules and properly manage their
reference counts in this fashion, so that LNS knows when to appropriately destroy an
object. Failure to properly call AddRef() when copying an object returned by an event
will cause access violations in the client application, as it will hold a pointer to an object
that has already been deleted. Failure to properly call Release() when removing an
object from memory that was returned by an event will result in memory leaks in the
client application or in LNS.

The Visual Basic runtime environment manages object reference counts automatically,
so you do not need to be concerned with memory leaks as a result of receiving LNS events
if you are using Visual Basic. For more information on COM reference count rules,
consult the Visual Studio documentation.

 LNS Programmer's Guide 318

NOTE: LNS uses an optimized memory allocator that manages its own local heap. This
allocator holds most memory that it allocates for future re-use. Therefore, early in an
application's run-time, memory usage may continually climb. However, it will eventually
reach a point of stabilization. At this point, the memory allocator will have enough
memory in its pool so that it does not need to request more memory from the system.
Memory freed internally is kept by the allocator, and then re-used.

Debugging LNS Applications
This section describes a few considerations you should make when debugging an LNS
application. If a transaction is interrupted prior to completion for any reason, the LNS
databases and the network are returned to their states prior to the start of the
transaction. If an application starts a transaction, then it should commit or cancel the
transaction within a reasonable time to avoid hanging other applications. No other
applications can start a new transaction until the current one is committed or cancelled.
While a transaction is in progress, LNS automatically queues requests to start either
additional implicit or explicit transactions. If an application shuts down while it has an
outstanding transaction, and another application attempts to start a transaction, the
LNS Object Server will cancel the abandoned transaction within 30 seconds. Once a
transaction is committed or canceled, other transactions on the system can begin.

This behavior can cause problems when debugging your application. For example, LNS
may cancel a transaction because your application has started a transaction and is
halted in a breakpoint. You can disable this behavior by setting the following Windows
Registry DWORD entry to a non-zero value:

HKEY_LOCAL_MACHINE\SOFTWARE\LonWorks\NSS\Configuration\Transaction
Debugging

Set its value to 0 (zero), or remove the entry, to disable the transaction debugging mode.
You should only modify this Windows Registry entry for debugging purposes, since
disabling this feature may cause all LNS clients to lock up if the value is changed, and an
application running a transaction is improperly terminated. For more information on
transactions, see Using Transactions and Sessions on page 64.

You should also note that if your LNS application is abnormally terminated (due to a
crash or terminated by the debugger), there are some LNS processes that may be left
running. A few examples are NSSENG.EXE, LCAMON.EXE, and PTSERV.EXE. It could
take some of these processes up to one minute to finish after the application abnormally
terminates. Restarting your application before these processes have had a chance to
shutdown may cause your application to crash or hang. However, Echelon recommends
that you do not terminate these processes manually. You should allow them to finish
whenever possible. Note that you may have to reboot your PC in case a subsequent start
of your LNS application fails.

LNS and Line-Safe Expressions
Programmers sometimes combine several expressions in one line of code, as opposed to
explicitly assigning one object variable and performing one method invocation for each
part of an operation. For example, to fetch an AppDevice object named “Buzzer” from a
Subsystem object with the subsystem path “Shared Devices.Alarms”, starting from a
given System object, the step-by-step approach is as follows:

LNS Programmer's Guide 319

Dim MySubsystems As LcaSubsystems
Dim MySubsystem As LcaSubsystem
Dim MyDevices As LcaAppDevices
Dim MyBuzzer As LcaAppDevice

Set MySubsystems = MySystem.Subsystems
Set MySubsystem = MySubsystems.Item(“Shared Devices.Alarms”)
Set MyDevices = MySubsystem.AppDevices
Set MyBuzzer = MyDevices.Item(“Buzzer”)

The following example combines expressions to retrieve the “Alarm Buzzer” AppDevice
object with a single line of code:

Dim MyBuzzer As LcaAppDevice
Set MyBuzzer = MySystem.Subsystems.Item(“Shared Devices.Alarms”)._
 AppDevices.Item(“Buzzer”)

Echelon does not recommend using the abbreviated syntax for reasons of quality,
performance, and type-safety. When an application accesses a property of an LNS object
that is declared with its known type, such as LcaAppDevice, the runtime system can
access that property quickly and efficiently. This access method is known as early
binding, and means that the name of the property is translated into the property’s
numerical identifier at compilation time rather than at runtime.

Because early binding translates names into identifiers at compilation time, the accuracy
of a property or method name can be approved at the same time. The following example,
invoking a non-existent Tast() method on an AppDevice object, will therefore not
compile:

Dim MyBuzzer As LcaAppDevice
Set MyBuzzer =
MyBuzzer.Tast()

However, when the compiler evaluates a daisy-chained expression like the one shown
above, the compiler must return to the inferior method for the intermediate steps. This
method is called late binding, and means that the property and method names will be
translated into their respective numerical identifiers at runtime. Examine the following
single-line expression in detail:

Set MyBuzzer = MySystem.Subsystems.Item(“Shared Devices.Alarms”)._
 AppDevices.Item(“Buzzer”)

The MySystem variable is declared as LcaSystem, and its Subsystem property can
therefore be approved at compile-time. However, the COM interfaces that are used with
all LNS objects handle references to all types of LNS objects using references to COM’s
generic IDispatch interface. When the second part of the line-safer expression is
evaluated (“MySystem.Subsystems.Item(...)”), access to the Item property must
therefore use late binding. As a result, the following code example, containing deliberate
typing errors, will compile correctly, and will only fail if the offending line of source code
is being executed.

Set MyBuzzer = MySystem.Subsystems.Ixyz(“Shared Devices.Alarms”).Devices.Get(“Buzzer”)

Although none of the Ixyz, Devices, or Get properties and methods exists, this line of
code will compile correctly. If, on the other hand, each assignment is made step-by-step,
the incorrect property and method names will fail evaluation at compile time.

 LNS Programmer's Guide 320

Echelon strongly recommends the exclusive use of early binding techniques. Note that
LNS director applications may have to use late binding strategies when accessing LNS
plug-in software. See the Implementing an LNS Director Application section on page 278
for more information on this.

The shorthand using a combined subsystem path such as “Shared Devices.Alarm” as
shown in the above example is supported directly by the LcaSubsystems object. Echelon
recommends using a complete subsystem path when known, as opposed to iterating
several levels of Subsystem objects. Using a subsystem path leads to shorter and faster
code, with reduced risk of programming error.

Finally, another frequently used line safer is the use of default properties. While not
supported by all development tools, Visual Basic is a popular example of a development
tool supporting default properties. While not recommended (as detailed above), the
single-line expression to obtain the Buzzer device could be further abbreviated by
removing the Item properties. The following example will, although not being
recommended, still compile and execute correctly.

Set MyBuzzer = MySystem.Subsystems(“Shared _
Devices.Alarms”).AppDevices(“Buzzer”)

The Item properties could be removed because this particular property is flagged as the
default for the object, and will be automatically queried if no property or method name is
explicitly given. Echelon does not recommend using default properties in the interest of
source code maintenance. Future developers of your LNS application will have to know
about default properties, and which property has the default flag for each particular LNS
object, in order to efficiently maintain and enhance the source code. Explicitly stating the
correct type, property or method names will make your application’s code more self-
explanatory and easier to maintain.

LNS and Internet Information Services
When using Microsoft’s Internet Information Services (IIS) to connect to an LNS
network, there are several things you should consider. Because IIS serves HTTP pages,
and HTTP is a stateless protocol, IIS will completely disconnect from the LNS Server
after every page is served. This means that the LNS Server must close and restart for
each LNS function call you make, which would cause each operation to take a
considerable amount of time. As a result, you should use the LNS Server application to
provide remote access to the network, and then use a Lightweight client application to
perform all operations on the network. By using the LNS Server application to provide
remote access to the network, the requirement to connect and reconnect to the LNS
Server is eliminated, and replaced by a quick socket connection. This will greatly
improve the performance of your application. In addition, this method allows you to run
IIS and the LNS Server application on different machines.

LNS Programmer's Guide 321

Appendix A - Deprecated

Methods and Obsolete Files

This appendix lists LNS methods, properties and objects that
should no longer be used in LNS Turbo Edition. It also lists
files installed with previous versions of LNS that are no
longer used, but not removed by the LNS Turbo Edition
installation.

 LNS Programmer's Guide 322

Deprecated Methods, Objects, Properties and Events
As of LNS Turbo Edition, some methods, objects, properties and events have been
deprecated. This section provides a list of those items. Some have been deprecated
because they were never implemented in LNS, or because they are no longer applicable
or useful. Others have been deprecated because they have been replaced by new features
with better functionality.

Note that many of the objects, methods, properties and events marked as deprecated in
the documentation are still implemented in LNS Turbo Edition to maintain backwards-
compatibility with applications running on previous versions of LNS. For example, many
of the methods of the ConfigProperty object have been deprecated as a result of the
new data point feature, including the GetElement(), GetElementFromDevice(),
SetElement(), and SetElementFromDevice() methods. You can still successfully use
these methods when running on LNS Turbo Edition. However, Echelon recommends that
you use the DataPoint object to read and write configuration properties, and so these
methods have been marked deprecated.

The following sections list the deprecated objects, properties, methods and events in LNS
Turbo Edition. The reason for deprecation can be determined using the following codes:

BA – Better Feature Available. The feature is still implemented in LNS for compatibility
purposes, but a more efficient way to achieve its purpose exists.
U – Unimplemented. The feature was never implemented in LNS.
NLA – No Longer Applicable. The feature is still implemented in LNS for compatibility
purposes, but is no longer useful or functional because of other changes to the LNS
implementation.

For more extensive details on why each of the items in the following list have been
deprecated (i.e. what feature to use for those marked BA), consult the LNS Object Server
Reference help file.

Deprecated Objects
The following objects have been deprecated for Turbo Edition. This means that you
should no longer use the object, or any of its properties and methods, in your
applications.

BuildTemplate Object (U)
BuildTemplates Object (U)
HardwareTemplate Object (U)
HardwareTemplates Object (U)
NetworkVariableField Object (BA)
ProgramTemplate Object (U)
ProgramTemplates Object (U)

Deprecated Methods
The following methods have been deprecated for Turbo Edition. Note that the objects
these methods apply to have not been deprecated, unless those objects are listed in the
Deprecated Objects section.

LNS Programmer's Guide 323

Build Method (U)
CloseComponent Method (U)
Export Method (AppDevice and DeviceTemplate Objects) (U)
GetElement Method (BA)
GetElementFromDevice Method (BA)
GetField Method (NetworkVariable Object) (BA)
GetRawValues Method (BA)
GetRawValuesFromDevice Method (BA)
Link Method (U)
Lock Method (U)
OpenComponent Method (U)
Purge Method (BA)
RecoverFromNssDb Method (U)
Remove Method (Networks Collection) (BA)
SetCapacity Method (NLA)
SetElement Method (BA)
SetElementFromDevice Method (BA)
SetRawValues Method (BA)
SetRawValuesFromDevice Method (BA)
Unlock Method (U)

Deprecated Properties
The following properties have been deprecated for Turbo Edition. Note that the objects
these properties apply to have not been deprecated, unless those objects listed in the
Deprecated Objects section.

ActiveXComponent Property (U)
BuildStatus Property (U)
BuildTemplate Property (U)
BuildTemplates Property (U)
CompatibleNv Property (BA)
ComplementaryNv Property (BA)
ConnErrNvMtIndex1 Property (BA)
ConnErrNvMtIndex2 Property (BA)
DataServerHandle Property (NLA)
DataServerObjectHandle Property (NLA)
DsAuthenticate Property (BA)
DsAutoUpdate Property (U)
DsEventSubscription Property (NLA)
DsFormatFilesPath Property (NLA)
DsMessageOwner Property (NLA)
DsMode Property (NLA)
DsMonitorTag Property (BA)
DsPause Property (NLA)
DsPrecision Property (BA)
DsPriority Property (NetworkVariable and NetworkVariableField objects) (BA)
DsReportByException Property (BA)
DsRetries Property (NetworkVariable and NetworkVariableField objects) (BA)

 LNS Programmer's Guide 324

DsService Property (BA)
DsUseBoundUpdates Property (BA)
DynamicNvPersistenceMode Property (BA)
ExportDirectory Property (U)
ExportFormat Property (U)
FormatLocale Property (BA)
GraphicsDirectory Property (U)
HardwareTemplate Property (U)
HardwareTemplates Property (U)
LockDuration Property (U)
ProgramTemplate Property (U)
ProgramTemplates Property (U)
RawValue Property (ConfigProperty Object) (BA)
RawValueFromDevice Property (ConfigProperty Object) (BA)
RemoteIgnorePendingUpdate Property (BA)
SingleUserMode Property (NLA)
TypeDefaultValue Property (BA)
Value Property (NetworkVariable, NetworkVariableField, ConfigProperty
Objects) (BA)
ValueFromDevice Property (BA)

Deprecated Events
The following events have been deprecated for Turbo Edition.

OnBuildMessage Event (U)
OnNetworkServiceDeviceReset Event (NLA)

Obsolete Files
If you are upgrading to LNS Turbo Edition from a previous version of LNS, the installer
will leave several obsolete files on your PC. Table A.1. lists the obsolete files left by the
LNS runtime installation (i.e. Echelon LNS utilities), and Table A.2 lists the obsolete
files left by the LNS Application Developer’s Kit installation.

Note that in the following tables, <LNSDIR> represents the target directory you have
chosen to install LNS to. By default, this is the [Windows Drive]\LonWorks directory.

 Table A.1 Obsolete Runtime Files

Installation
Directory

File Name

<LNSDIR>\bin Typfilr.exe, Typfilw.exe, Drfusrnv.exe

<LNSDIR>\bin Xif2to3.exe, xif2to3.txt

LNS Programmer's Guide 325

Table A.2 Obsolete Application Developer’s Kit Files

Installation Directory File Name

<LNSDIR>\import Actuator.xif, Actuator.xfb,
analog.h, anlgsnsr.apb,
anlgsnsr.nc, anlgsnsr.xif,
display.h, rtclock.h,
scptanlg.apb, scptanlg.nc,
scptanlg.xfb, scptanlg.xif,
sensor.xif, sensor.xfb,
temperat.h

<LNSDIR>\DataServer Include\dsv.h,
Include\LnsDsError.h,
Lib\lcadatsv.lib

<LNSDIR>\NetworkServices\include Neuron.h, ni.h, ni_app.h,
ni_callb.h, ni_comm.h,
ni_mgmt.h, ni_nmexp.h,
ni_nmext.h, ni_slta.h,
ni_snvt.h, ns.h, ns_apb.h,
ns_event.h, ns_lic.h, ns_msg.h,
ns_nativ.h, ns_nmc.h, ns_opts.h,
ns_plat.h, ns_props.h, ns_reg.h,
ns_spprt.h, ns_srsts.h,
ns_srvc.h, ns_xifb.h, nse.h,
nse_db.h, nse_dba.h, nse_exa.h,
nse_idb.h, nse_int.h,
nse_iseq.h, nse_mio.h,
nse_seq.h, nse_snd.h,
nse_srvc.h, nsx.h, nsx_def.h,
nsx_host.h, nsx_prop.h,
nsx_qnss.h, nsx_user.h,
nsxstdxr.h, platform.h

<LNSDIR>\ObjectServer\include Lca.h, lca_errs.h, lcaobjsv_i.h,
lcaobjsv_i.c

<LNSDIR>\ObjectServer\include\MFC
Class Wrappers

Lcaobjsv.h, lcaobjsv3.h,
lcaobjsv.cpp

<LNSDIR>\ObjectServer\include Version.h

<LNSDIR>\ObjectServer\Examples Sub-directories: LNSexample,
LNSexample-VC++, LNSlmapplet,
LNSmcapplet, LonMarkDevices,
QuickStart

<LNSDIR>\types\include lcadrf.h, lcadrfw.h

<LNSDIR>\types\lib lcadrf32.lib, ldrf32r.lib

<LNSDIR>\types\source Cacheutl.h, cacheutl.c,
drfbase.c, drfcat.c, drffpt.c,
drfgen.c, drflang.c, drftype.c,
drftypt.c, lcadrfi.h, lcadrfiw.h

 LNS Programmer's Guide 326

LNS Programmer's Guide 327

Appendix B – LNS, MFC and

ATL

This section provides information you may find useful when
using LNS with MFC and ATL.

 LNS Programmer's Guide 328

LNS, MFC and ATL
Versions 6.0 and higher of Microsoft Visual C++ offer two ways to import the interfaces
exposed by the LNS Object Server ActiveX Control into an existing project: the MFC
Class Wizard, and the ATL #import statement described in Chapter 4 of this document.

As of LNS Turbo Edition, the legacy MFC wrappers, in the files lcaobjsv.h,
lcaobjsv3.h, and lcaobjsv.cpp, are no longer included with the LNS Application
Developer's Kit. They required the use of many other header files to include LNS
constants, and were difficult to keep synchronized with the LNS Object Server type
library constants. Instead of using the MFC wrappers, the ATL #import statement
described in Chapter 4 of this document should be included in a global header file to
expose the full set of objects, properties, methods, and constants included with LNS.

The ATL #import statement provides a wrapper that is superior to the MFC wrappers.
The wrapper uses ATL smart pointers to directly call the functions of the LNS Object
Server. In addition, the wrappers generated by the ATL #import statement
automatically regenerate whenever the LNS Object Server is updated (i.e. when service
packs or new versions of the software are released). This is unlike the legacy MFC
wrappers, which must be carefully maintained whenever the LNS Object Server is
updated.

NOTE: Although it is not recommended, you can still generate the lcaobjsv.h,
lcaobjsv3.h, and lcaobjsv.cpp files manually, and use the wrapper files generated
by the MFC Class Wizard instead of the new #import statement. For more information
on this, see the Generating the Legacy MFC Class Wrapper Files section later in this
appendix.

You can apply a combination of the two approaches to take advantage of all available
benefits. You can use the wrappers generated by the MFC Class Wizard to handle
events, and use the wrappers generated by the #import statement to implement the
objects, methods and properties of the LNS Object Server. To do so, follow the steps
described in Chapter 4 to import the LNS Object Server Active X Control. Then, to utilize
the smart pointer for the Object Server interface, use the following assignment
statement. In this statement, the m_ObjectServer variable was declared with code
generated by the MFC Class Wizard:
Header:
#import “lcaobjsv.ocx” rename_namespace(“lns”)

Implementation:

lns::_DLcaObjectServerPtr objectServer = m_ObjectServer.GetControlUnknown();

Then you’ll need to use the ATL smart-pointers (i.e. lns::ILcaNetworksPtr for the
Networks collection):

lns::ILcaNetworksPtr networks = objectServer->Networks;

lns::ILcaNetworkPtr network = networks->Item[“mynetwork”];

To only use the ATL wrappers, you need to manually add the code to create an instance
of the LNS Object Server to your application, as well as the framework for the event
handlers. The following example code shows how you could create an instance of the LNS

LNS Programmer's Guide 329

Object Server and also advise for LNS Object Server events. This code is included in the
LNSMonitorCtrl.cpp file included with the LNS Turbo Edition examples suite.

HRESULT CLNSMonitorCtrlApp::OpenLca()

{

 HRESULT hResult = S_OK;

 hResult = m_pObjectServer.CreateInstance (_T("LonWorksObjectServer.1"));

 if (hResult != S_OK)

 {

 // failed to create object server instance

 m_IDS = IDS_FAILED_OBJSERVER;

 return hResult;

 }

 // Creating ObjectServer Event Handler...

 m_pEventSink = new CEventSink();

 if (m_pEventSink == NULL)

 {

 // failed to create event sink

 m_IDS = IDS_FAILED_EVENT_HANDLER;

 return E_FAIL;

 }

 // Route the ObjectServer events to handlers in our EventSink class

 hResult = m_pEventSink->DispEventAdvise(IUnknownPtr(m_pObjectServer));

 return hResult;

}

The CEventSink class is based on IDispEventSimpleImpl, and is used to handle LNS
Object Server events. This section briefly describes how the class was constructed. See
the EventSink.h file included with the LNS Turbo Edition example application suite
for complete source code, and reference the Microsoft Developer’s Network
documentation for more information on IDispEventSimpleImpl.

The event handler prototypes and the event handler information of type
ATL_FUNC_INFO for the SINK_ENTRY_INFO macros were created within the
EventSink.h file using the _com_dispatch_method calls:
#include "LNSMonitorCtrl.h"
static _ATL_FUNC_INFO OnNvMonitorPointEventInfo = {CC_STDCALL,
 VT_EMPTY, 2,
 {VT_DISPATCH, VT_I2}};
static _ATL_FUNC_INFO OnMsgMonitorPointEventInfo = {CC_STDCALL,
 VT_EMPTY, 2,
 {VT_DISPATCH, VT_I2}};

BEGIN_SINK_MAP(CEventSink)
SINK_ENTRY_INFO(IDC_EVENTS,
 lca::DIID__DLcaObjectServerEvents,

 LNS Programmer's Guide 330

 lca::lcaEventIdNvMonitorPointEvent,
 OnNvMonitorPointEvent,
 &OnNvMonitorPointEventInfo)
SINK_ENTRY_INFO(IDC_EVENTS,
 lca::DIID__DLcaObjectServerEvents,
 lca::lcaEventIdMsgMonitorPointEvent,
 OnMsgMonitorPointEvent,
 &OnMsgMonitorPointEventInfo)
END_SINK_MAP()

The wrapper function in lcaobjsv.tli provides the necessary fields to fill in the
ATL_FUNC_INFO structure:
#pragma implementation_key(16)
inline HRESULT lca::_DLcaObjectServerEvents::OnNvMonitorPointEvent(
 IDispatch * MonitorPoint,
 short EventType)
{
 HRESULT _result;
 _com_dispatch_method(this,
 0x13,
 DISPATCH_METHOD,
 VT_ERROR,
 (void*)&_result,
 {VT_DISPATCH, VT_I2},
 MonitorPoint,
 EventType);
 return _result;
}

The first 2 parameters will always be CC_STDCALL and VT_EMPTY to indicate the
necessary calling convention and a VOID return type. The 3rd parameter specifies number
of parameters the event handler received. For example, in the case of the
OnNvMonitorPointEvent event, the value is 2, for the MonitorPoint and EventType
parameters. Finally, an array of parameter sizes in bytes is listed within {}.

The remaining piece of information necessary from the lcaobjsv.tli file is the DISPID
specified within the implementation_key macro for the event handler wrapper in the
lcaobjsv.tli file. This value is used as the third parameter of the
SINK_ENTRY_INFO macro. The value is also defined within the lcaobjsv.tli file as the
lcaEventIdNvMonitorPointEvent constant.

Finally, the actual event handler declaration for OnNvMonitorPointEvent event would
be:

void __stdcall OnNvMonitorPointEvent(LPDISPATCH MonitorPoint,
 short EventType)

{

}

Generating the Legacy MFC Class Wrapper Files
This section describes how to generate the lcaobjsv.h, lcaobjsv3.h, and
lcaobjsv.cpp files using Microsoft Visual C++ 6.0. To do so, follow these steps:

1. Open the Microsoft Visual C++ 6.0 development environment. From the
File menu, select New.

LNS Programmer's Guide 331

2. Select the Projects tab on the dialog that opens, and select MFC
AppWizard (exe). Then, enter a project name and verify that the
Create a new workspace option is selected. Click OK to continue.

3. This opens the MFC AppWizrd – Step 1 dialog. Select Dialog based as
the type of application, and click Finish.

4. This opens the New Project Information dialog. Click OK. At this
point, an empty dialog with OK and Cancel buttons opens.

5. From the Project menu, select the Add to project sub-menu and then
select Components and Controls. This opens the Components and
Controls Gallery dialog.

6. Double-click Registered ActiveX Controls, and then select
LonWorksObjectServer. The Filename field will be set to
LONWORKSObjectServer.lnk, and the Path to control field will usually
be set to c:\lonworks\bin\lcaobjsv.ocx.

7. Click Insert and then click OK on the confirmation dialog.

8. This opens the Confirm Classes dialog. Verify that the Class name
field is set to CLcaObjectServer. Then, change the Header File field
from LcaObjectServer.h to LcaObjSv3.h and change the
Implementation File field from LcaObjectServer.cpp to
LcaObjSv.cpp. Press OK to return to the Components and Controls
Gallery dialog.

9. Click Close to close the dialog. Now, the Toolbox dialog of C++ 6.0 has an
extra button at end of list of controls called LonWorksObjectServer, as
shown below:

 LNS Programmer's Guide 332

Figure B.1 Visual C++ Toolbox

Drag this new icon anywhere onto the empty dialog mentioned in step 4.

10. Right-click the new icon, and select Class Wizard from the pop-up menu
that appears. This opens the MFC Class Wizard dialog.

11. Select the Message Maps page. Then open the Add Class… drop-down
list and select the From a type library… submenu. This opens the
Import from Type Library dialog. Enter
c:\lonworks\bin\lcaobjsv.ocx (or whatever the Path to control
field was set to in step 6) and click Open.

12. This opens the Confirm Classes dialog. Select all LCA class names, and
then deselect the five LCA class names that start with an underscore
character, such as _DLcaObjectServerEvents. Then, change the
Header File field from lcaobjsv.h to lcaobjsv3.h. Press the OK
button to return to the MFC Class Wizard dialog.

13. Optionally, add any desired event handlers.

14. Optionally, select the Member Variables page, and add a variable to
represent the control ID IDC_11.

15. On the MFC Class Wizard dialog, click OK. The LcaObjSv3.h and
LcaObjSv.cpp files have now been successfully added to the project.

Next, you need to edit the two files to maintain backwards compatibility. To do so, follow
these steps:

LNS Programmer's Guide 333

1. Open the lcaobjsv3.h file. From the Edit menu, select Replace. In the
Find what field, enter “ILca.” Note that the first two letters are
capitalized. In the Replace with field, enter “Lca.” Note that the first
letter is capitalized.

2. Click Replace all, and then save the changes to the file.

3. Open the LcaObjSv.cpp file, and make the same change to this file as
described in steps 1 and 2. The class wrappers are now complete, with all
LNS Turbo Edition features available.

Finally, you need to add the following statements to your project before the start of your
code. Note that you need to reference the complete path of the lcaobjsv.ocx file in this
statement. This should match the setting of the Path to control field in step 6.

#import "c:\lonworks\bin\lcaobjsv.ocx" rename_namespace("lns")
using namespace lns;

 LNS Programmer's Guide 334

LNS Programmer's Guide 335

Appendix C – LNS Turbo Edition
Example Application Suite

This appendix provides an overview of the example
applications included with LNS Turbo Edition. This includes
an example network management application, an example
monitor and control application, and an example director
application.

 LNS Programmer's Guide 336

LNS Turbo Edition Example Application Suite
LNS Turbo Edition features several example applications you will find useful when
developing your own applications. This appendix provides an overview of each
application. In addition, each application includes comments that provide more specific
detail on the example code.

The LNS Turbo Edition example application suite includes the following:

• Network Management Example

• Monitor and Control Example

• xDriver Example Applications

• Example Director Application

These example applications demonstrate a number of key LNS features and concepts.
The network management and monitor and control examples are C++ applications that
create an instance of the LNS Object Server, and uses wrappers generated by the
#import statement to implement the objects.

The example applications and all supporting files can be found in the
<LNSDIR>\ObjectServer\Examples directory, where <LNSDIR> represents the target
directory you have chosen to install LNS to. Each application has its own respective
folders within this directory.

Network Management Example
The network management example application supports operation as a Local,
Lightweight, or Full client, and utilizes a variety of LNS features for network
management that you can use to build and configure a network.

Device .XIF, .APB and .XFB files used by the network management application are
located in the <LNSDIR>\ObjectServer\Examples\Import directory. For initial
viewing of the network management example application, Echelon recommends using
the examples on a network consisting of 3 LTM-10A devices and an i.LON 600
LONWORKS/IP Server. Gizmo 4 I/O boards are not necessary as the I/O is limited to the
exposed LED on I/O 0 and pushbutton on I/O4. If you are not using LTM-10A device/s,
rebuild the .nc files in the <LNSDIR>\ObjectServer\Examples\NcSource directory.
Replace the .XIF, .APB and .XFB files of the corresponding device in the Import
subfolder.

The following sections describe the features encompassed by the example network
management application. To start the network management example application, select
Echelon LNS Application Developer’s Kit>Examples & Tutorials>LNS Network
Management Example from the Windows Programs menu. This opens the dialog
shown in Figure C.1.

LNS Programmer's Guide 337

Figure C.1 Example Network Management Application

The following sections describe how you can use this dialog, and reference the location of
the source code you can view to see how the tasks you perform are accomplished using
LNS.

Initializing a Network
There are several steps you need to take when opening a network with an LNS
application, as described in Chapter 4 of this document. To initialize the example
network management application, follow these steps from the dialog shown in Figure
C.1:

1. From the General tab, select an LNS client type. The different client
types are introduced in Chapter 3 of this document. When you select a
client type, the application will initialize the LNS Object Server. For
source code information on this task, see
CLcaHelper::OpenObjectServer in the LcaHelper.cpp file.

 LNS Programmer's Guide 338

In addition, the Network Name drop-down box will list all networks
accessible by your application as soon as you select a client type. For
source code information, see
CDlgInitializeGeneral::SelectClientType in the
dlginitializegeneral.cpp file. The client type is passed into
m_iClientType. The description of the monitor and control example
later in this appendix provides more details on each of the client types
you can select.

2. From the Interface Name drop-down box, select a network interface.
This drop-down box lists all configured LONWORKS network interfaces
available on your system (i.e. all the network interfaces included in the
NetworkInterfaces collection). For initialization source code information,
see CDlgInitializeGeneral::InitNetworkInterfaceName() in the
dlginitializegeneral.cpp file.

3. From the Network Name drop-down box, select an already existing
network from the drop-down list or create a new network by typing in the
name of the new network. Although this lists all networks known to the
LNS Object Server (i.e. the Network collection), you should note that the
network management example can only manage networks created with
the example application. For source code information, see
LcaHelper::GetNetworks(void). For selection and initialization
steps see CDlgInitializationGeneral::InitDatabaseName() from
the dlginitializegeneral.cpp file.

4. Once you have selected a client type, a network interface and a network,
you need to specify the licensing mode, as described in Chapter 4 of this
document. To select the licensing mode, select the License tab on the
dialog shown in Figure C.1. You will then be able to select either
Standard Mode or Demonstration Mode. If you select Standard Mode, you
will need to enter the customer ID and customer key.

5. Click Set Now to save your changes. This will reinitialize the LNS Object
Server, if necessary. For source code information on this, see
OpenObjectServer in the LcaHelper.cpp file.

6. Now, select the General tab to return to the dialog shown in Figure C.1.
If you selected a new network in step 3, click the Create button (or the
Add button if you are running as a Lightweight client). This creates an
example network if you are running as a LNS Full client using the
Networks collection, or adds an entry to the global database if you are
running as a Lightweight client.

For Local clients, or Full clients using the RemoteNetworks collection, a
"template network" is created called __LNS320TEMPLATE that will be
used as a basis for all future networks. This network is created in the
<LNSDIR>\lm\db\lns32 folder, where <LNSDIR> represents the target
directory you have chosen to install LNS to. The template network
contains device and connection description templates. To generate an
example network, a backup of this "template network" is created and
then imported with the network name you had specified. The network is
first opened with the system management mode set to
lcaMgmtModeDeferConfigUpdates to prevent the propagation of

LNS Programmer's Guide 339

device configuration updates to the network. This allows devices,
dynamic network variables, and network variable connections to be
quickly created in the network database.

The Network Path text box displays the current network’s
DatabasePath property. It is read-only before the database name string
is edited, and after a new database name is selected. Otherwise, it is
possible to alter the path name while the Object Server is initialized as a
local client.

In future session with the network management example, you can
manage previously created example networks by clicking the Manage
button. This opens the network, with the system management mode set
to propagate all network configuration updates.

Performing Network Management Tasks
Once you have initialized the example network management application, you can
perform network management tasks with the application. To do so, select the Manage
button on the main dialog shown in Figure C.1. This will open a dialog similar to the one
shown in Figure C.2:

Figure C.2 Performing Network Management Tasks

The tree in the Network Devices pane represents the layout of the network, subsystem
by subsystem. Each device is displayed in the subsystem that it belongs to. For example,

 LNS Programmer's Guide 340

in Figure C.2, the Lamp_02, Lightswitch_01 and Thermostat_03 devices all belong to the
111 Main.First Floor.Bathroom subsystem.

The bottom part of the dialog provides LNS licensing information relevant to your
network, and information on the resources available to your network. For source
information on this part of the dialog, see the lcahelper.cpp file and
CDlgMain::RefreshStatistics() in the dlgmain.cpp file.

Network management operations that you can perform are listed on the right side of the
dialog shown in Figure C.2. If you are using the network setup of LTM-10A devices
recommended earlier in this chapter, you can perform all of the tasks described in the
rest of this section.

The following procedure describes how you could use the example network management
application to commission a device with the network management dialog:

1. If you are using an i.LON 600 LONWORKS/IP Server, select the IP
Backbone to FT Floor 1 router in the tree and click the Commission
button to provide a Neuron ID for the i.LON 600 LONWORKS/IP Server.
The network management code will identify the near side of the router
and associate the Neuron ID with it.

 If you are not using an i.LON 600 LONWORKS/IP Server, you should move
your Network Service Device to the same floor or room as the devices you
plan to manage. To do so, select the NetworkServiceDevice in the 111
Main subsystem (the NsdAppDev_FULLLOCAL_HOST_1 device).
Then, click the Move button and select 111 Main/First
Floor/Bathroom as the destination subsystem. Because the example
maintains a relationship between all subsystems, the AppDevice object
representing the Network Service Device will be move to the appropriate
channel and subsystem simultaneously. For source code information, see
CDlgMove::OnOK in the CdlgMove.cpp file, and
LcaNetMgmtHelper::EngineeredMoveOfDeviceToSubsystem() in
the LcaNetMgmtHelper.cpp file.

2. Select the Lamp_02 device from the tree hierarchy and click
Commission. This will associate the AppDevice or Router object in the
LNS database with a physical device on the network.

For source code information on these tasks, see CDlgIdentify::OnOk
and CDlgMain::OnBtnCommission() in the dlgmain.cpp file.

3. After you click the Commission button, a dialog will open requesting
that you select a device identification method. Select either service pin,
manual entry or device discovery as the device identification method.
These methods are described in Chapters 5 and 6 of this document.

4. Check the Load Application checkbox. This opens a dialog that allows
you to specify how the configuration properties on the device will be set.
You can choose from the following:

• Download current values to devices

• Upload values from device

• Reset device to default values

LNS Programmer's Guide 341

• Set device template defaults from device

• Upload value set to unknown in the LNS database

• Set all configuration property values to unknown.

Each of these choices causes the application to call either the
DownloadConfigProperties() or the UploadConfigProperties()
methods with the appropriate options set. Consult Chapter 6 of this
document, or the LNS Object Server Reference help file, for more
information on these methods.

5. Click OK. If no errors are encountered, focus will return to the dialog
shown in Figure C.2. You will notice all pushbuttons on the right side are
active. You have successfully commissioned your device.

Table C.2 describes some of the other tasks you can perform from the dialog shown in
Figure C.2. To perform them, select a device, and then click the applicable button.

Table C.2 Other Network Management Tasks

Item Description

Decommission Button Click the Decommission button to
decommission a device or router.
CDlgLcaEventHandlerContainer will
receive the resulting OnLicenseEvent
and forward it to the CDlgMain for
processing. For source information, see
the ObjServer OnSystemServicePin
handler in the DlgMain.cpp file.

Replace Button Click the Replace button to update the
Neuron ID for the device and then call
the Replace() method to replace the
device. The LNS Object Server will
attempt to decommission the existing
device before commissioning the
replacement.

For source code information, see
CDlgIdentify::OnOk in the
DlgIdentify.cpp file.

 LNS Programmer's Guide 342

Item Description

Diagnose Button This command exposes the following
network management tasks of the
AppDevice or Router objects:

• Wink Device (AppDevice objects
only)

• Go Offline

• Go Online

• Test Device

• Reset Device

These operations, along with a Results
Pane are displayed through the Device
Diagnostics dialog that opens when you
select the Diagnose button.

Move Button Click the Move button to move a device
to another subsystem

Upgrade Button Click the Upgrade button to upgrade
the device interface, application and
device firmware. When you click the
Upgrade button, the Upgrade Device
dialog opens, which requires you to enter
the following information:

• Device Template Name

• Device Interface Source

Backup Network Button This operation performs a backup of the
current network. The image path of a
backed up network is based on the
database path with “_” appended. Also,
the backed up network is imported into
the Networks collection for validation.

In case a problem is encountered, the
user is prompted to review the diagnostic
logic and attempt a database repair.

Source Code Mappings
For your reference, Table C.2 lists the various tasks performed by the example network
management application, and the names of the classes containing the code that invokes
these tasks.

LNS Programmer's Guide 343

Table C.2 Example Network Management Application

Task GUI Code LNS Interface Code

Initialize and open the
LNS ObjectServer

CDlgInitialize

CDlgInitializeLicense

CDlgInitializeGeneral

CLcaHelper::OpenObjectServer

Create a network database
based on a database
template.

CDlgInitializeGeneral CLcaNetMgmtHelper::CreateNetwork()

Add an LNS Server
reference for a
Lightweight client
application.

CDlgInitializeGeneral CLcaNetMgmtHelper::CreateNetworkReference()

Open a network. CDlgMain::OnInitDialog CLcaNetMgmtHelper::OpenNetwork

CLcaHelper::SetSelectedNetworkName(sNetworkName);

CLcaHelper::OpenNetwork()

Backup and validate a
network database.

CDlgMain::OnBtnBackup() CLcaNetMgmtHelper::NetworkBackup

Import external interface
files.

DlgUpgrade.xif

Create engineered mode
devices for which the
Neuron ID is provided by
user input, and the device
interface extracted from an
external interface file.

CDlgIdentify::OnOK CLcaNetMgmtHelper::CreateTemplateNetwork()

Create ad hoc devices for
which Neuron ID is
identified by a
OnSystemServicePin
event, or selected from a
list of discovered devices,
The device interface is
extracted from the self
documentation information
on the device.

CDlgIdentify::OnOK

Manual Neuron ID
entry.

CDlgIdentify_NidByTxt

Service-pin Neuron
ID discovery.

CDlgIdentify_NidByServicePin

CDlgIdentify_NidByDiscovery::
DiscoverDevices

CDlgIdentify_NidByServicePin::OnInitDialog
CDlgLcaEventHandlerContainer::OnCmdMsg
CDlgIdentify_NidByServicePin::OnSystemServicePin
CDlgIdentify_NidByServicePin::OnCancel

CLcaNetMgmtHelper::BeginChangeEvent
CLcaNetMgmtHelper::DiscoverDevices_Asynchronous

 LNS Programmer's Guide 344

Task GUI Code LNS Interface Code

Creating
connections
between devices.

 CLcaNetMgmtHelper::CreateNetworkVariableConne
ctions_ForEventBasedMonitoring

CLcaNetMgmtHelper
::CreateNetworkVariableConnections_ForHVAC

CLcaNetMgmtHelper::CreateNetworkVariableConne
ctions_ForLightingControl

Configuring
devices using
ConfigProperty
objects.

CDlgIdentify_CpUpdate CDlgIdentify_CpUpdate::OnOK

Testing devices. CDlgDiagnostics CDlgDiagnostics::OnTest

Moving devices
between
subsystems and
between channels.

CDlgMain::OnBtnMove CLcaNetMgmtHelper::EngineeredMoveOfDeviceToSu
bsystem

Adding channels. CLcaNetMgmtHelper::CreateNetworkObjects

Loading
application images.

CDlgUpgrade::OnOK CLcaNetMgmtHelper ::UpgradeDevice

Upgrading devices. CDlgUpgrade::OnOK CLcaNetMgmtHelper ::UpgradeDevice

Licensing tasks. CDlgMain CDlgLcaEventHandlerContainer::OnCmdMsg

CDlgMain::OnLicenseEvent

Replacing a
Network Service
Device.

CDlgNsdReplace CLcaNetMgmtHelper ::SetNetworkServiceDevice

Monitor and Control Example
Once you have created a network with the network management example application,
you can use the monitor and control example application to monitor and control the
application. The monitor and control example utilizes a variety of LNS features you can
use to do so. The following sections describe these features. Remember that you can only
use the monitor and control example application with networks created with the network
management example application.

To start the monitor and control example application, select Echelon LNS Application
Developer’s Kit>Examples & Tutorials>LNS Monitor and Control Example from
the Windows Programs menu. This opens the dialog shown in Figure C.3.

LNS Programmer's Guide 345

Figure C.3 Example Monitor and Control Application

The following section describes how you can use this dialog, and reference the location of
the source code you can view to see how the tasks you perform are accomplished using
LNS.

1. First, select a client type. This determines how the example monitor and
control application will connect to the LNS Server. The different client
types are introduced in Chapter 3 of this document. The client type you
select determines which networks and network interfaces will be
available from the Network Name and Network Interface drop-down
boxes you will use in the following steps.

Note that for remote client types, you will need to have the LNS Server
running on the same PC that contains the LNS global database. This is
the PC on which you created the network with the network management
application.

In addition, if you selected Remote Lightweight Client, you will need
to perform the following steps before proceeding to step 2:

 LNS Programmer's Guide 346

1. Close the monitor and control application, and launch the
network management application from the client PC.

2. Select Remote Lightweight Client as the Client Type
option.

3. Type in the network name

4. The Network Path textbox will turn into Server IP
address and port and will be enabled. Enter this
information using the following format: <lns://
xxx.xxx.xxx.xxx:2540/>.

5. Click Manage.

6. Close the network management application. Then, restart the
monitor and control application and continue with step 2
below.

Table C.3 lists where you can find source code information for each
possible selection:

Table C.3 Source Code Information

Selection For Source Code Information, See….

Local Client CLcaMonitorDlg::OnSelectLocalClient() in the
LcaMonitorDlg.cpp file.

Remote Client
Using Networks
Collection

CLcaMonitorDlg::OnSelectFullClientUseNetworksCol()in the
LcaMonitorDlg.cpp file.

Remote Client
Using Remote
Networks
Collection

CLcaMonitorDlg::OnSelectFullClientUseRemoteNetworksCol()
in the LcaMonitorDlg.cpp file.

Remote
Lightweight Client

CLcaMonitorDlg::OnSelectLightWeightClient() in the
LcaMonitorDlg.cpp file.

Server
Independent Client

CLcaMonitorDlg::OnSelectIndependentClient() in the
LcaMonitorDlg.cpp file.

2. Select a network interface from the Network Interface drop-down box.
Typically, this should be the network interface that the LNS Server PC is
using. With certain client types, this option will be selected for you. (i.e.
Remote Lightweight Client).

For source code information, see
CLcaMonitorDlg::OnSelchangeNetworkInterfaceName() in the
LcaMonitorDlg.cpp file.

3. Select a network created with the example network management
application from the Network Name drop-down box. This lists the

LNS Programmer's Guide 347

names of all networks in the Networks, RemoteNetworks or
VNINetworks collections, as dictated by the client type selected in step 1.

If Server Independent was selected, the VNINetworks collection is
used. If Remote Full client using Remote Networks Collection was
selected, the RemoteNetworks collection is used. In all other cases, the
Networks collection is used.

For source code information, see
CLcaMonitorDlg::OnSelchangeNetworkName() in the
LcaMonitorDlg.cpp file.

4. Once you have selected a network, click the Monitor button to begin
monitor and control operations. Note that the Locale field contains the
FormatLocales collection included with the example. This field is static
and read-only.

5. When you click the Monitor button, the dialog shown in Figure C.4
opens.

Figure C.4 Monitor Set Dialog

6. Click the Temporary Monitor Set button to perform monitor and
control operations with temporary monitor sets, or the Permanent
Monitor Set button to perform monitor and control operations with
permanent monitor sets. See Chapter 9 of this document for an overview
of the differences between the two types of monitor set.

 LNS Programmer's Guide 348

7. If you clicked the Temporary Monitor Set button in step 6, a dialog
with a tree view of the AppDevice objects installed on your network will
open. Select the AppDevice object containing the network variable(s) you
want to monitor.

A temporary monitor set will be created containing a network variable
monitor point for every network variable on the devices main and custom
interfaces.

For source information and specific properties set for these objects see
CPrimaryFormDlg::OnTemporaryMonSet() in the
PrimaryFormDlg.cpp file. Also, see the TempMonitorSetDlg.cpp file.

8. If you clicked the Permanent Monitor Set button in step 6, a dialog will
display allowing you to open one or more permanent monitor sets. For
source information, see CPrimaryFormDlg::OnPermanentMonSet() in
the PrimaryFormDlg.cpp file, and the PermMonitorSetDlg.cpp file.

9. Once you have completed step 7 or 8 and created a monitor set, you can
choose from the following options:

• Click the Query Device Status button to query the status of the
devices using the message monitor points available in the currently
selected monitor set.

• Click the Toggle Monitoring Button to enable or disable monitor
points.

• Click the Set Value button to write to the value of an input network
variable monitor point.

Source Code Mappings
For your reference, Table C.4 lists the various tasks performed by the example monitor
and control application, and lists the names of the classes containing the code that
invokes these tasks.

Table C.4 Example Monitor and Control Application

Task GUI Code LNS Interface Code

Creating monitor
sets and monitor
points.

 CLcaMonitorHelper::CreateExampleMonitorSets

Browsing explicitly
polled and bound
monitor points.

Opening a monitor set:

CPrimaryFormDlg::OnPermanentMonSet

CPrimaryFormDlg::OnTemporaryMonSet

Handling updates

 CPrimaryFormDlg::OnTimer

Opening a Monitor Set:

 CLcaMonitorHelper::OpenCurMonitorSet

Assigning an event handler

 CEventSink::OnNvMonitorPointEvent

Handling events

 CMonitorPointListener:: raw_UpdateEvent

 CMonitorPointListener::raw_UpdateErrorEvent

LNS Programmer's Guide 349

Task GUI Code LNS Interface Code

Use of the Tag
property for
“pigeon-holing”
data values

 CLcaMonitorHelper::CreateMonitorPointTag in

 CLcaMonitorHelper:: AddNVMonitorPoints

 CLcaMonitorHelper:: AddMsgMonitorPoints

 CLcaMonitorHelper::AddTemporaryNVMonitorPoints

CLcaMonitorHelper::AddTemporaryMsgMonitorPoints

Change event
tracking.

 Handling events

 CEventSink::OnNvMonitorPointEvent

Explicitly reading
or writing a
monitor point.

CUpdateValueDlg

CUpdateValueDlg::OnWrite

CUpdateValueDlg::DataPointRead

Sending explicit,
synchronous
messages using
message monitor
points.

CDeviceStatusDlg::OnQueryStatus CLcaMonitorHelper::QueryDeviceStatus

xDriver Example Applications
The xDriver example applications are described in detail in the OpenLDV Programmer’s
Guide, xDriver Supplement, which can be downloaded from Echelon’s website at:

http://www.echelon.com/support/documentation/default.htm

Example Director Application
LNS Turbo Edition also includes an example director application, as referenced in the
Implementing an LNS Director Application section in Chapter 12 of this document. To
start the example director application, select Echelon LNS Application Developer’s
Kit>Examples & Tutorials>LNS Plug-In Director Example from the Windows
Programs menu. This opens the dialog shown in Figure C.5.

http://www.echelon.com/support/documentation/default.htm

 LNS Programmer's Guide 350

Figure C.5 Example Director Application Dialog

To use the example director application, select the network you want to open from the
Network drop-down box. Then, select a network interface from the Network Interface
drop-down box and click Open Network. You can then use the 4 tabs of the dialog
shown in Figure C.5, as described below:

• Select the Registry Entries tab to display the keys and associated class IDs for
the plug-in applications associated with the network. These are stored in the
(Default) string in the Windows Registry under
HKEY_LOCAL_MACHINE\SOFTWARE\LonWorks\LCA\Plug-Ins. Click the
Refresh button reinitializes the internal data structure with registry
information and updates the list.

• Select the Plug-In Registration tab to register a plug-in application, or to view
plug-in applications that have already been registered. This tab contains three
lists:

The Unregistered Plug-Ins list contains the plug-in application names found in
the Windows Registry for which a ComponentApp object with the
lcaCommandIdRegister command is not found in the LNS database. Select an
item from this list, and click the Register plug-in button to register the plug-in.

The Object Server Registered list contains the names of plug-in applications
that have been registered with the LNS Object Server, and are available to all
networks. It lists the associated RegisteredServer property of the
ComponentApp objects for the lcaCommandIdRegister command in the
ComponentApps collection of the Object Server scope next to the plug-in
application’s name.

LNS Programmer's Guide 351

The System Registered list shows the names of the plug-in applications that
have been registered for use with the open network’s system. It lists the
associated RegisteredServer property of the ComponentApp object for the
lcaCommandIdRegister command in the ComponentApps collection of the
System scope.

• Select the LNS Collections tab to display the list of all the ComponentApp
objects in the database, based on scope.

• Select the Plug-in Launching tab to invoke commands on target devices on the
network. You can select the object to be acted upon from the Target Object tree
on the left. When you select an object of type lcaClassIdAppDevice, all of the
commands that apply to the device template for that object will be displayed in
the Commands Available tree.

The included commands are the ComponentApp objects registered at the
AppDevice, System and ObjectServer scopes. Regardless of the object type,
the Class ID and Target Path fields at the bottom of the dialog display
information from the selected object. Once an item is selected from the
Commands Available table, the Launch Plug-in button becomes active. This
allows the end user to create an instance of the plug-in and send it the selected
command.

For your reference, Table C.5 lists the various tasks performed by the example director
application, and lists the names of the classes containing the code that invokes these
tasks.

Table C.5 Example Director Application

Taks GUI Code LNS Interface Code

Initialize and open the LNS
Object Server.

FrmMain.InitNIs

FrmMain.InitNetworks
FrmMain.InitLNS

FrmMain.btnOpenNetwork_Click
List plug-in applications
previously registered with
Windows via the Windows
Registry.

FrmMain.ListPlugins

FrmMain.ProcessPlugIns
CPluginRegistry.InitFromRegistry

List plug-ins commands
previously registered with
the LNS Object Server or
System.

FrmMain.ListPlugins FrmMain.ProcessPlugIns

Instantiate, initialize, and
send a register command to
a plug-in application. Note
successful registration by
adding a ComponentApp
object.

FrmMain.btnRegister_Click

Send a command to a plug-
in application.

FrmMain.BtnLaunch_Click CCommand.Launch

www.echelon.com

	Preface
	Purpose
	Audience
	Examples
	Technical Support
	System Requirements
	Development System
	LNS Server PC for a Smaller Network
	LNS Server PC for a Larger, Busier Network
	LNS Remote Client PC

	Table of Contents

	Chapter 1 - Installing the LNS Software
	System Requirements
	3rd Party Software
	Installing the LNS Application Developer’s Kit
	Installing the LNS Application Developers Kit Software
	Installing the LNS Redistribution Kit
	Developing Your LNS Application

	Chapter 2 - What’s New in Turbo Edition
	Performance Enhancements
	New Features
	Enhanced Data Formatting
	GetDataPoint Method
	FormatLocales Collection

	Changeable Network Variable Types
	Improved Support for Dynamic Interfaces
	Improved Monitoring Performance
	Using Permanent Monitor Sets
	Using Temporary Monitor Sets

	Availability of Network Resource Information
	Enhanced LonMark Interoperability
	Improved Device Commissioning Performance
	System Management Mode Enhancements
	Enhanced Configuration Property Management
	Online Database Validation and Backup
	Miscellaneous
	New LNS Runtime Installations

	Compatibility
	Interface Compatibility
	Database
	Runtime Component Updates
	Application Developer’s Kit Include Files
	Exception Codes
	New Features
	Propagating Device Changes While Offnet
	Dynamic Functional Blocks
	DataPoint Object Improvements
	Formatting Enhancements
	Enhanced LonMark Interoperability
	LonWorks Interfaces Control Panel
	Support for i.LON 1000, i.LON 600 and ANSI/CEA-852 Channels
	Flexible Program ID
	Modifiable Device-Specific Configuration Properties
	Changeable Network Variable Types
	Compatibility Case 1 – Writing Compatible Network
	Compatibility Case 2 – Devices That Support Old a

	Security

	Chapter 3 - LNS Overview
	Introduction to LNS
	The LNS Programming Model
	LNS Components
	LNS Databases and the LNS Server
	LNS Object Server
	LNS Object Server Hierarchy

	Network Service Devices
	Network Interfaces

	LNS Network Services
	Network Management
	Monitor and Control

	LNS Clients
	Local Client Applications
	Lightweight Client Applications
	Full Client Applications
	Independent Clients

	Getting Started

	Chapter 4 - Programming an LNS Application
	Programming an LNS Application
	Importing the LNS ActiveX Control
	Importing the Control into Visual Basic 6.0
	Importing the Control into Visual C++

	Initializing an LNS Application
	Initializing a Local Client Application
	Selecting the Access Mode
	Specifying the Licensing Mode
	Opening the Object Server
	Selecting a Network Interface
	Opening a Network

	Initializing a Remote Full Client Application
	Selecting the Access Mode
	Specifying the License Mode
	Opening the Object Server
	Selecting a Network Interface
	Opening a Network

	Initializing a Remote Lightweight Client Application
	Selecting the Remote Access Mode
	Specifying the License Mode
	Opening the Object Server
	Opening a Network

	Initializing an Independent Client

	Opening a System
	Setting System Parameters

	Using Transactions and Sessions
	Managing Transactions
	Monitoring and Transactions
	Using Transactions With Collections

	Managing Sessions

	Event Handling
	Exception Handling
	Terminating an LNS Application

	Chapter 5 - Network Management : Installing a Network
	LNS Network Installation Scenarios
	Installation Scenarios
	Engineered Mode Installation
	Ad Hoc Installation
	Automatic Installation

	Engineered Mode
	Definition Phase
	Commissioning Phase
	Commissioning Phase, Multiple Networks

	Ad Hoc Installation
	Automatic Installation
	Discovering and Installing Devices
	Discovering When New Devices are Attached to the Network
	Determining a Device's Location

	Installing Devices
	Discovering When Devices are Detached or Replaced

	System Management Mode Considerations
	lcaMgmtModePropagateConfigUpdates
	lcaMgmtModeDeferConfigUpdates
	Intended Usage of the System Management Mode
	Changing the System Management Mode
	Tracking Device Updates
	Tracking System Management Mode Changes
	Affects on Network Management Methods and Properties

	Chapter 6 - Network Management: Defining, Commissioning and Connecting Devices
	Defining, Commissioning and Connecting Devices
	Device Interfaces
	Program IDs and DeviceTemplate Objects
	Device Resource Files
	Scope Selectors

	The Bigger Picture
	Maintaining Device Interfaces With LNS

	Defining and Commissioning Devices
	Creating AppDevice Objects
	Neuron ID Assignment
	Service Pin
	Confirmed Service Pin Protocol

	Find and Wink
	Manual Entry

	Loading Device Application Images
	Post-Load State
	Reloading a Device's Application

	Commissioning Devices
	Using the Commission and Commission Ex Methods
	Device Validation Options
	Device Configuration Considerations
	LNS Licensing Considerations

	Configuring Devices
	Generic Configuration Data
	Application-specific Configuration Data
	Downloading and Uploading Configuration Properties
	Writing Configuration Property Values

	Setting Devices Online

	Other Device Management Operations
	Testing Devices and Detecting Device Failures
	Using the OnAttachment Event
	Performing Diagnostics on LonMarkObjects

	Replacing Devices
	Replacing Network Service Devices

	Upgrading Devices
	Decommissioning Devices
	Moving Devices and Managing Networks With Multiple Channels
	Removing Devices
	Removing Devices From Multiple Subsystems

	Connecting Devices
	Connection Rules
	Adding Connections
	Modifying Connections
	
	Mirrored Connections

	Listing Connections and Connection Members
	Using the OnNodeConnChange Event

	Connection Descriptions

	Chapter 7 - Network Management: Optimizing Connection Resources
	Using Custom Connection Description Templates
	Setting ConnectDescTemplate Properties

	Optimizing Connection Resources
	Network Design Time
	Alias Options
	Broadcast Options
	Using the AliasOptions and BroadcastOptions Properties

	Example Connection Scenario: Building Controls
	Solving Problems With Your Connection Scenarios
	Shortage of Groups
	Shortage of Address Table Space
	Shortage of Aliases
	Summary of Resource Shortage Recommendations

	Predictive Strategies
	Conclusion

	Chapter 8 - Network Management: Advanced Topics
	Managing Network Service Devices
	Upgrading a Network Service Device
	Moving a Network Service Device
	Remote Full Clients
	Using the PreReplace Method

	Using Shared Media
	Managing Networks with Multiple Channels
	Overview of Router Types and Operation
	Explicitly Controlling Channel Allocation
	Explicitly Controlling Subnet Allocation

	Installing and Configuring Routers
	Installation Order

	Installing Devices With Multiple Channels
	Channel Isolation Process
	Resolving Installation Failures

	Moving Devices and Routers Between Channels
	Removing Routers

	Using Dynamic Device Interfaces
	Accessing a Device Interface
	Adding a Custom Interface to a Device
	Adding LonMark Functional Blocks To a Custom Interface
	Configuring LonMark Functional Blocks

	Adding Message Tags To a Custom Interface
	Creating Dynamic Network Variables
	Tracking Custom Interface Changes

	Changeable Network Variable Types
	SCPTnvType Configuration Properties

	Chapter 9 - Monitor and Control
	Introduction to Monitor and Control
	Temporary and Permanent Monitor Sets
	Permanent Monitor Sets
	Temporary Monitor Sets

	Creating Monitor Sets
	Managing Monitor Sets
	Adding Network Variable Monitor Points to a Monitor Set
	Adding Message Monitor Points to a Monitor Set
	Setting Monitoring Options
	Network Variable Monitor Point Options
	NvMonitorOptions Object

	Message Monitor Point Options
	MsgMonitorOptions Object

	Opening and Enabling Monitor Sets
	
	Using the Enable Method

	Using Network Variable Monitor Points
	Explicitly Reading and Writing Network Variable Monitor Points
	Example of Explicitly Reading a Network Variable Monitor Point
	Example of Explicitly Writing a Network Variable Monitor Point

	Polled Network Variable Monitoring
	Setting the Poll Interval
	Example of a Network Variable Event Handler

	The Implicit Bound Network Variable Monitoring Scenario
	The Explicit Bound Network Variable Monitoring and Control Scenario
	Fan-in Connections
	Fan-out Connections
	Creating and Using Host Network Variables
	Defining Host Network Variables

	Using Message Monitor Points
	Monitoring Message Monitor Points
	Receiving Message Monitor Point Updates
	Example Message Monitor Point Event Handler

	Controlling Message Points

	Developing Remote Monitor and Control Applications
	Tracking Monitor Point Updates
	System Management Mode Considerations
	Directly Reading and Writing Network Variables
	Data Points and Enumerated Types

	Using Configuration Properties In a Monitor and Control Application
	Device-Specific Configuration Properties
	Using the GetDataPoint Method
	Data Source Options

	Resynchronizing Configuration Property Values
	
	Determining When Values Are Out-Of-Sync

	Performance Considerations

	Data Formatting
	FormatSpec Property
	Reading the FormatSpec Object

	CurrentFormatLocale
	Creating FormatLocale Objects

	Chapter 10 - LNS Database Management
	Overview of LNS Databases
	Automatic Database Upgrade
	Backing Up Network Databases
	Backup Method

	Validating Network Databases
	LNS Database Validation Tool
	Validate Method
	Special Considerations
	Using the CompactDb() Method

	Removing Network Databases
	Moving Network Databases
	Network Recovery
	Network Recovery Inconsistencies
	Performing a Network Recovery
	Application-Level Recovery
	Recovery and Mirrored Connections

	Chapter 11 - LNS Network Interfaces
	Network Interfaces Overview
	Standard and High Performance Network Interfaces
	
	Addressing
	LonTalk Transactions
	Number of Groups
	Supporting Multiple Networks
	Neuron Ids

	Using xDriver Interfaces
	Using LONWORKS/IP Interfaces
	Network Interfaces and Network Service Devices

	Chapter 12 - Director Applications and Plug-Ins
	Introduction to the LNS Plug-In Model
	LNS Plug-In API
	Registering Plug-Ins
	Registering a Plug-In in the LNS Database
	Registering a Plug-In in the Windows Registry
	Registering Plug-In Commands in the Windows Registry

	Accessing Extension Data
	Implementing an LNS Director Application
	Implementing the Client-Side LNS Plug-In API
	Detecting Existing Plug-Ins
	Registering Plug-Ins
	Detecting Applicable Plug-Ins
	Launching Plug-Ins
	Advanced Plug-In Management Tasks

	Implementing an LNS Plug-In
	Implementing an LNS Device Plug-In
	Managing Device Configuration

	Chapter 13 - LNS Licensing
	Overview of LNS Licensing and Distribution
	Demonstration Mode
	Standard Mode
	Entering the Standard Mode
	Protecting Your Keys

	Viewing License Status
	Tracking License Events
	License Event Types

	Licensing and Network Recovery
	Licensing and Device Manufacturing
	Testing Devices

	Using the LNS License Utilities
	Using the LNS Server License Wizard
	Using the LNS Server License Transfer Utility

	Chapter 14 – Distributing LNS Applications
	Distributing LNS Applications
	Using the LNS Redistributable Maker Utility
	Adding the LNS Runtime to an LNS-based Product Installation
	Using setup.exe
	Step 1: Preset the LONWORKS Path
	Step 2: Preset the LNS Network Database Path
	Step 3: Check the Installed LNS Version
	Step 4: Check the LNS Runtime Installation Completion Status
	Step 5: Install the version 3 Microsoft XML Parser

	Using _SetupLNS.dll
	LNS Server and Remote Client Runtime Incompatibility
	Windows Installer and InstallShield Caveats

	Chapter 15 - Advanced Topics
	File Transfer
	Using the OnSystemNssIdleEvent
	Developing Remote Tools
	Developing Mobile Tools
	Registering a Mobile Application
	Moving a Mobile Application to a New Channel

	Multi-Threading and LNS Applications
	Avoiding Memory Leaks with LNS
	Debugging LNS Applications
	LNS and Line-Safe Expressions
	LNS and Internet Information Services

	Appendix A - Deprecated Methods and Obsolete Files
	Deprecated Methods, Objects, Properties and Events
	Deprecated Objects
	Deprecated Methods
	Deprecated Properties
	Deprecated Events

	Obsolete Files

	Appendix B – LNS, MFC and ATL
	LNS, MFC and ATL
	Generating the Legacy MFC Class Wrapper Files

	Appendix C – LNS Turbo Edition Example Application Suite
	LNS Turbo Edition Example Application Suite
	Network Management Example
	Initializing a Network
	Performing Network Management Tasks
	Source Code Mappings

	Monitor and Control Example
	Source Code Mappings

	xDriver Example Applications
	Example Director Application

